Question

Defining $\log(z-a) = \log|z-1| + i\arg(z-a)$, show that the real and imaginary parts of $\log(z-a)$ are harmonic functions in any region not containing z=a.

Answer

Method 1

If R does not contain a, then $w = \ln(z - a)$ is analytic in R. Hence the real and imaginary parts are harmonic in R.

Method 2

Let $z - a = re^{i\theta}$. Then $\log(z - a) = \log r + i\theta$.

Then in polars, Laplace's equation is

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$$

Can substitute $\phi = \log r$ or $\phi = \theta$ and they automatically satisfy this equation. Hence Re and Im parts are harmonic.