Question

By considering the function $A \log (z)+B$, find a harmonic function in the upper half plane $\operatorname{Im}(z)>0$ which takes the prescribed values

$$
\phi\left(x, 0^{+}\right)=\left\{\begin{array}{l}
1, x>0 \\
0, x<0
\end{array}\right.
$$

Answer

Let $P h i=A \log z+B$, where $\Phi=P h i(z), z=x+i y$. Assume A and B are real.
Then
$\operatorname{Re}(\Phi)=A \log \left(x^{2}+y^{2}\right)^{\frac{1}{2}}$
$\operatorname{Im}(\Phi)=A \arg (z)+B=\arctan \left(\frac{y}{x}\right) \times A+B$ fro $\underline{y>0}$
Φ is analytic except at $z=0$ (and along a cut from there which can be taken along negative imaginary axis). Thus $\operatorname{Re}(\Phi)$ and $\operatorname{Im}(\Phi)$ are harmonic in $\operatorname{Im}(z)>0$.
If $\phi\left(x, o^{+}\right)=\left\{\begin{array}{l}1, x>0 \\ 0, x<0\end{array}\right.$
the obvious choice is $\operatorname{Im}(\Phi)$.
Why?
Well

$$
\begin{align*}
\operatorname{Im}(\Phi) & =A \theta+B \\
\theta & =\arctan \left(\frac{y}{x}\right) \tag{1}
\end{align*}
$$

So for $\begin{aligned} & x>0, y=0, \theta=0 \\ & x<0, y=0, \theta=\pi\end{aligned}$
Thus
$\operatorname{Im}(\Phi)= \begin{cases}B & x>0, y=0 \\ A \pi+B & x<0, y=0\end{cases}$
Compare (1) and (2) to see $B=1, A=\frac{-1}{\pi}$.
Thus harmonic function is:

$$
\phi(x, y)=1-\frac{1}{\pi} \arctan \left(\frac{y}{x}\right)
$$

This is unique.

