Question

By considering the function $A \log(z) + B$, find a harmonic function in the upper half plane Im(z) > 0 which takes the prescribed values

$$\phi(x,0^+) = \begin{cases} 1, x > 0\\ 0, x < 0 \end{cases}$$

Answer

Let $Phi = A \log z + B$, where $\Phi = Phi(z)$, z = x + iy. Assume A and B are real. Then $Re(\Phi) = A \log(x^2 + y^2)^{\frac{1}{2}}$ $Im(\Phi) = A \arg(z) + B = \arctan\left(\frac{y}{x}\right) \times A + B$ fro $\underline{y > 0}$ Φ is analytic except at z = 0 (and along a cut from there which can be taken along negative imaginary axis). Thus $Re(\Phi)$ and $Im(\Phi)$ are harmonic in Im(z) > 0. If $\phi(x, o^+) = \begin{cases} 1, x > 0\\ 0, x < 0 \end{cases}$

If $\phi(x, o^+) = \begin{cases} 1, & x \neq 0 \\ 0, & x < 0 \end{cases}$ the obvious choice is $Im(\Phi)$. Why? Well

$$Im(\Phi) = A\theta + B$$
$$\theta = \arctan\left(\frac{y}{x}\right)$$

(1)

So for $x > 0, y = 0, \theta = 0$ $x < 0, y = 0, \theta = \pi$. Thus $Im(\Phi) = \begin{cases} B & x > 0, y = 0 \\ A\pi + B & x < 0, y = 0 \end{cases}$ (2) Compare (1) and (2) to see $B = 1, A = \frac{-1}{\pi}$. Thus harmonic function is:

$$\phi(x,y) = 1 - \frac{1}{\pi} \arctan\left(\frac{y}{x}\right)$$

This is unique.