Question
Laplace’s equation can be written in polar coordinates as
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Suppose V2¢ = 0 inside the unit semi-circle 0 < r < 1, 0 < # < 7. Deduce
that a possible solution can take the form ¢ = A + Bf where A, B are
constants. Confirm that this is indeed the unique solution when the following
boundary conditions are specified and find A and B.
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Show that ¢ = Re(A —iBlogz), z = x + 1y = rexp(if). Now use the
method of conformal transformations to solve the following boundary-value
problems, where V2¢ = 0 in the unit semi-circle 0 <r <1, 0 <0 < 7.

(a) If the boundary conditions are now:
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In particular, show that on # =7, ¢ =1 — — arctan ( ! )
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(Hint: consider the transformation w =

(b) If the boundary conditions are now
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In particular, show that on r = 1, for a suitably chosen range of arctan,
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Answer
PICTURE

Check: ¢(r,0) = A+ B0 = ¢, = ¢, =0, ¢g = B, pgg =0
1 1 0 0
Therefore V2(z,y) = ¢ + ~dp + Zdo =0+ —+ 5 =0, 1 £ 0V
Now satisfy boundary conditions
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(which it does everywhere so boundary condition is satisfied)
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so ¢(r,0) = 1 — =0 satisfies V?¢ =0 in P
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Consider z = x + 1y

®(z)=A—iBlogz, A, BER

Re[®(z)] = Re(A +iBlog|z| + BO) = A+ BO = ¢(r,0) as required.
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