QUESTION

- If f(z) = u(x,y) + iv(x,y) and $\overline{f(z)} = u(x,y) iv(x,y)$ are both analytic in a region D show that f is constant in D. (Hint: Cauchy-Riemann equations). Also show that if f is analytic and |f| is constant then f is constant. ANSWER
- (i) Either do this directly using the Cauchy-Riemann equations, or note that $(x+iy)^3=x^3-3xy^2+i(3x^2y-y^3)$. Thus y^3-3xy is the imaginary part of $-z^3$ and so y^3-3x^2y is harmonic, its conjugate harmonic function is $3xy^2-x^3$ and the corresponding analytic function is $-z^3$. (ii) $1/z=1/(x+iy)=(x-iy)/(x^2+y^2)$. Thus $y/(x^2+y^2)$ is the imaginary part of -1/z and is thus harmonic in any region not containing the origin. Thus $y/(x^2+y^2)$ is the imaginary part of -1/z, so that $y/(x^2+y^2)$ is harmonic, its conjugate harmonic function is $-x/(x^2+y^2)$ and -1/z is the corresponding analytic function.