QUESTION

Show that the functions

i)
$$y^3 - 3x^2y$$
 and

ii)
$$\frac{y}{(x^2+y^2)}$$

are harmonic in some region of the plane. In each case find a conjugate harmonic function and identify the corresponding analytic function.

ANSWER

The Cauchy inequalities imply that if z_0 is a complex number, and if M_R is the maximum value of |f(z)| on the circle centre z_0 , radius R, then $|f''(z_0)| \le 2M_R/R^2$. As f is entire, (analytic thoughout \mathbf{C}), R can be as large as we please, so that f''(w) = 0, for all $w \in \mathbf{C}$. Thus f'(w) = a, a complex constant. Therefore

$$\int_0^z f'(w)dw = az + b$$

(b a complex constant) and hence

$$f(z) = az + k$$

(k a complex constant). As $|f(z)| \le A|z|$, by putting z = 0, we get f(0) = 0, so that k = 0 and f(z) = az.