Question

Describe briefly what is meant by a linear birth-death process.

Amoeba, a single cell animal, reproduces itself by dividing into two. A flask of water contains a number, b, of amoeba. The probability that an amoeba divides into two in a time interval of length δt is $\lambda \delta t + o(\delta t)$, and the probability that it dies is $\mu \delta t + o(\delta t)$. Let $p_n(t)(n = 0, 1, 2, \cdots)$ denote the probability that the flask contains n amoebae at times t, and $p'_n(t)$ denote its derivative with respect to time. Show that

 $p'_{n}(t) = \lambda(n-1)p_{n-1}(t) - (\lambda+\mu)np_{n}(t) + \mu(n+1)p_{n+1}(t),$ $n = 1, 2, 3, \cdots.$

Suppose that the mean number of amoebae at time t is

$$M(t) = \sum_{n=0}^{\infty} n p_n(t).$$

Show that M(t) satisfies the differential equation

$$M'(t) = (\lambda - \mu)M(t),$$

and hence find M(t).

If W(t) denotes the mean of the square of the number of amoebae at time t prove that

$$W'(t) = 2(\lambda - \mu)W(t) + (\lambda + \mu)M(t).$$

Explain, without performing any calculations, how the result could be used to find the variance of the number of amoebae at time t.

Answer

A linear birth-death process is a $s.p(X(t) : t \ge 0)$ where X(t) is the number of individuals in the population at time t, and where, in any time interval of length δt each individual has, independent of age and other individuals, a probability $\lambda \delta t + o(\delta t)$ of producing a new individual, and a probability $\mu \delta t + o(\delta t)$ of dying

 $\begin{aligned} P(X(t+\delta t) &= n+1 \mid X(t) = n) = \lambda n \delta t + o(\delta t) \\ P(X(t+\delta t) &= n-1 \mid X(t) = n) = \mu n \delta t + o(\delta t) & \text{as } \delta t \to 0 \\ P(X(t+\delta t) &= n \mid X(t) = n) = 1 - (\lambda + \mu) n \delta t + o(\delta t) \end{aligned}$

$$P_n(t + \delta t) = P(X(t + \delta t) = n) = P(X(t + \delta t) = n | X(t) = n - 1)P(X(t) = n - 1)$$

$$\begin{aligned} +P(X(t+\delta t) &= n \mid X(t) = n+1)P(X(t) = n+1) \\ +P(X(t+\delta t) &= n \mid X(t) = n)P(X(t) = n) \\ &= \lambda(n-1)\delta t p_{n-1}(t) + \mu(n+1)\delta t p_{n+1}(t) \\ +(1-(\lambda+\mu)n\delta t)p_n(t) + o(\delta t) \end{aligned}$$

$$\begin{split} & \underset{n=0}{\overset{\text{Thus}}{\frac{p_n(t+\delta t)-p_n(t)}{\delta t}}{\frac{\delta t}{\lambda(n-1)p_{n-1}(t)+\mu(n+1)p_{n+1}(t)+\mu(n+1)p_{n+1}(t)-(\lambda+\mu)np_n(t)}}{Now \ M(t) &= \sum_{n=0}^{\infty} np_n(t) = \sum_{n=1}^{\infty} np_n(t)} \\ & \text{so } M'(t) &= \sum_{n=1}^{\infty} np'_n(t) \\ &= \sum_{n=1}^{\infty} \lambda(n-1)np_{n-1}(t) + \sum_{n=1}^{\infty} \mu(n+1)np_{n+1}(t) - \sum_{n=1}^{\infty} (\lambda+\mu)n^2p_n(t)}{1 \\ &= \sum_{n=0}^{\infty} \lambda n(n-1)np_n(t) + \sum_{n=0}^{\infty} \mu n(n-1)np_n(t) - \sum_{n=0}^{\infty} (\lambda+\mu)n^2p_n(t)} \\ &= \sum_{n=0}^{\infty} p_n(t)[\lambda n^2 + \lambda n + \mu n^2 - \mu n - \lambda n^2 - \mu n^2] \\ &= (\lambda-\mu)\sum_{n=0}^{\infty} np_n(t) = (\lambda-\mu)M(t) \\ & \text{so } M'(t) &= (\lambda-\mu)M(t) \\ & \text{The general solution is } M(t) &= Ae^{(\lambda-\mu)t} \\ X(0) &= b \ \text{so } M(0) &= b \\ & \text{Thus } M(t) &= be^{(\lambda-\mu)t} \\ & \text{Now } W(t) &= \sum_{n=1}^{\infty} n^2 p_n(t) \ \text{so} \end{split}$$

$$W'(t) = \sum_{n=1}^{\infty} n^2 p'_n(t)$$

= $\sum_{n=1}^{\infty} \lambda n^2 (n-1) p_{n-1}(t) + \sum_{n=1}^{\infty} \mu n^2 (n+1) p_{n+1}(t)$
 $- \sum_{n=1}^{\infty} (\lambda + \mu) n^3 p_n(t)$
= $\sum_{n=0}^{\infty} \lambda (n+1)^2 n (n-1) p_n(t) + \sum_{n=0}^{\infty} \mu (n-1)^2 n p_n(t)$
 $- \sum_{n=0}^{\infty} (\lambda + \mu) n^3 p_n(t)$
= $\sum_{n=0}^{\infty} p_n(t) [\lambda n^3 + 2\lambda n^2 + \lambda n + \mu n^3 - 2\lambda \mu^2 + \mu n - \lambda n^3 - \mu n^3]$
= $2(\lambda - \mu) \sum_{n=0}^{\infty} n^2 p_n(t) + (\lambda + \mu) \sum_{n=0}^{\infty} np - n(t)$
Thus $W'(t) = 2(\lambda - \mu) W(t) + (\lambda + \mu) M(t)$

Thus $W'(t) = 2(\lambda - \mu)W(t) + (\lambda + \mu)M(t)^{n=0}$ Since M(t) is known, this is a linear 1st order equation which can be solved for W(t). Then $Var(t) = W(t) - M9t)^2$.