Question

Describe briefly what is meant by a linear birth-death process.
Amoeba, a single cell animal, reproduces itself by dividing into two. A flask of water contains a number, b, of amoeba. The probability that an amoeba divides into two in a time interval of length δt is $\lambda \delta t+o(\delta t)$, and the probability that it dies is $\mu \delta t+o(\delta t)$. Let $p_{n}(t)(n=0,1,2, \cdots)$ denote the probability that the flask contains n amoebae at times t, and $p_{n}^{\prime}(t)$ denote its derivative with respect to time. Show that
$p_{n}^{\prime}(t)=\lambda(n-1) p_{n-1}(t)-(\lambda+\mu) n p_{n}(t)+\mu(n+1) p_{n+1}(t)$,
$n=1,2,3, \cdots$.
Suppose that the mean number of amoebae at time t is

$$
M(t)=\sum_{n=0}^{\infty} n p_{n}(t)
$$

Show that $M(t)$ satisfies the differential equation

$$
M^{\prime}(t)=(\lambda-\mu) M(t)
$$

and hence find $M(t)$.
If $W(t)$ denotes the mean of the square of the number of amoebae at time t prove that

$$
W^{\prime}(t)=2(\lambda-\mu) W(t)+(\lambda+\mu) M(t)
$$

Explain, without performing any calculations, how the result could be used to find the variance of the number of amoebae at time t.

Answer

A linear birth-death process is a $\operatorname{s.p}(X(t): t \geq 0)$ where $X(t)$ is the number of individuals in the population at time t, and where, in any time interval of length δt each individual has, independent of age and other individuals, a probability $\lambda \delta t+o(\delta t)$ of producing a new individual, and a probability $\mu \delta t+o(\delta t)$ of dying
$P(X(t+\delta t)=n+1 \mid X(t)=n)=\lambda n \delta t+o(\delta t)$
$P(X(t+\delta t)=n-1 \mid X(t)=n)=\mu n \delta t+o(\delta t)$ as $\delta \mathrm{t} \rightarrow 0$
$P(X(t+\delta t)=n \mid X(t)=n)=1-(\lambda+\mu) n \delta t+o(\delta t)$

$$
\begin{aligned}
P_{n}(t+\delta t) & =P(X(t+\delta t)=n) \\
& =P(X(t+\delta t)=n \mid X(t)=n-1) P(X(t)=n-1)
\end{aligned}
$$

$$
\begin{aligned}
& +P(X(t+\delta t)=n \mid X(t)=n+1) P(X(t)=n+1) \\
& +P(X(t+\delta t)=n \mid X(t)=n) P(X(t)=n) \\
= & \lambda(n-1) \delta t p_{n-1}(t)+\mu(n+1) \delta t p_{n+1}(t) \\
& +(1-(\lambda+\mu) n \delta t) p_{n}(t)+o(\delta t)
\end{aligned}
$$

Thus
$\frac{p_{n}(t+\delta t)-p_{n}(t)}{\delta t}=$
$\lambda(n-1) p_{n-1}(t)+\mu(n+1) p_{n+1}(t)+\mu(n+1) p_{n+1}(t)-(\lambda+\mu) n p_{n}(t)$
Now $M(t)=\sum_{n=0}^{\infty} n p_{n}(t)=\sum_{n=1}^{\infty} n p_{n}(t)$
so $M^{\prime}(t)=\sum_{n=1}^{\infty} n p_{n}^{\prime}(t)$
$=\sum_{n=1}^{\infty} \lambda(n-1) n p_{n-1}(t)+\sum_{n=1}^{\infty} \mu(n+1) n p_{n+1}(t)-\sum_{n=1}^{\infty}(\lambda+\mu) n^{2} p_{n}(t)$
$=\sum_{n=0}^{\infty} \lambda n(n-1) n p_{n}(t)+\sum_{n=0}^{\infty} \mu n(n-1) n p_{n}(t)-\sum_{n=0}^{\infty}(\lambda+\mu) n^{2} p_{n}(t)$
$=\sum_{n=0}^{\infty} p_{n}(t)\left[\lambda n^{2}+\lambda n+\mu n^{2}-\mu n-\lambda n^{2}-\mu n^{2}\right]$
$=(\lambda-\mu) \sum_{n=0}^{\infty} n p_{n}(t)=(\lambda-\mu) M(t)$
so $M^{\prime}(t)=(\lambda-\mu) M(t)$
The general solution is $M(t)=A e^{(\lambda-\mu) t}$
$X(0)=b$ so $M(0)=b$
Thus $M(t)=b e^{(\lambda-\mu) t}$
Now $W(t)=\sum_{n=1}^{\infty} n^{2} p_{n}(t)$ so

$$
\begin{aligned}
& W^{\prime}(t)= \sum_{n=1}^{\infty} n^{2} p_{n}^{\prime}(t) \\
&= \sum_{n=1}^{\infty} \lambda n^{2}(n-1) p_{n-1}(t)+\sum_{n=1}^{\infty} \mu n^{2}(n+1) p_{n+1}(t) \\
&-\sum_{n=1}^{\infty}(\lambda+\mu) n^{3} p_{n}(t) \\
&= \sum_{n=0}^{\infty} \lambda(n+1)^{2} n(n-1) p_{n}(t)+\sum_{n=0}^{\infty} \mu(n-1)^{2} n p_{n}(t) \\
&-\sum_{n=0}^{\infty}(\lambda+\mu) n^{3} p_{n}(t) \\
&= \sum_{n=0}^{\infty_{n}} p_{n}(t)\left[\lambda n^{3}+2 \lambda n^{2}+\lambda n+\mu n^{3}\right. \\
&\left.-2 \lambda \mu^{2}+\mu n-\lambda n^{3}-\mu n^{3}\right] \\
&= 2(\lambda-\mu) \sum_{n=0}^{\infty} n^{2} p_{n}(t)+(\lambda+\mu) \sum_{n=0}^{\infty} n p-n(t) \\
& \text { Thus } W^{\prime}(t)=2(\lambda-\mu) W(t)+(\lambda+\mu) M(t)
\end{aligned}
$$

Since $M(t)$ is known, this is a linear 1st order equation which can be solved for $W(t)$.
Then $\operatorname{Var}(t)=W(t)-M 9 t)^{2}$.

