QUESTION

Solve the following linear programming problem using the bounded variable simplex method.

$$
\begin{array}{ll}
\text { Maximize } & z=-7 x_{1}+2 x_{2}+7 x_{3}-x_{4} \\
\text { subject to } & 4 x_{1}-x_{2}+x_{3}+2 x_{4} \leq 8 \\
& 6 x_{1}+3 x_{2}+2 x_{3}-5 x_{4} \leq 25 \\
& 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 11 \\
& 0 \leq x_{3} \leq 9 \\
& 0 \leq x_{4} \leq 5
\end{array}
$$

(i) For the first constraint, give the range for the right-hand side within which the optimal basis remains unaltered. Also, perform this ranging analysis for the upper bound constraint $x_{4} \leq 5$.
(ii) If the objective function coefficient of x_{2} changes to $2+\delta$, for what range of values of δ is the change in the maximum value of z proportional to δ ?

ANSWER

Basic	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}		Ratio
s_{1}	0	4	-1	1	2	1	0	8	8
s_{2}	0	6	3	2	-5	0	1	25	$\frac{25}{2}$
	1	7	-2	-7	1	0	0	0	
Basic	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}		Ratio
x_{3}	0	4	-1	1	2	1	0	8	1
s_{2}	0	-2	5	0	-9	-2	1	9	$\frac{9}{5}$
	1	35	-9	0	15	7	0	56	

Perform simplex iteration and substitute $x_{3}^{\prime}=9-x_{3}$.

Basic	z	x_{1}	x_{2}	x_{3}^{\prime}	x_{4}	s_{1}	s_{2}		Ratio
x_{2}	0	-4	1	1	-2	-1	0	$-8+9=1$	
s_{2}	0	18	0	-5	1	3	1	$49-45=4$	
	1	-1	0	9	-3	-2	0	$-16+81=65$	
Basic	z	x_{1}	x_{2}	x_{3}^{\prime}	x_{4}	s_{1}	s_{2}		
x_{2}	0	32	1	-9	0	5	1	9	$\frac{2}{9}$
x_{4}	0	18	0	-5	1	3	1	4	$\frac{1}{5}$
	1	53	0	-6	0	7	3	77	

Perform simplex iteration and substitute $x_{4}^{\prime}=5-x_{4}$

Basic	z	x_{1}	x_{2}	x_{3}^{\prime}	x_{4}^{\prime}	s_{1}	s_{2}	
x_{2}	0	$-\frac{2}{5}$	1	0	$\frac{9}{5}$	$-\frac{2}{5}$	$\frac{1}{5}$	$\frac{9}{5}+9=\frac{54}{5}$
$x_{3} ;$	0	$-\frac{18}{5}$	0	1	$\frac{1}{5}$	$-\frac{3}{5}$	$-\frac{1}{5}$	$-\frac{4}{5}+1=\frac{1}{5}$
	1	$\frac{157}{5}$	0	0	$\frac{6}{5}$	$\frac{17}{5}$	$\frac{9}{5}$	$72 \frac{1}{5}+6=78 \frac{1}{5}$

Thus we have an optimal solution

$$
x_{1}=0 x_{2}=10 \frac{4}{5} x_{3}^{\prime}=\frac{1}{5} x_{4}^{\prime}=0 x_{3}=8 \frac{4}{5} x_{4}=5 z=78 \frac{1}{5}
$$

(i) If the right hand side of the first constraint is $8+\delta$, then the right hand sides in the final tableau are $\frac{54}{5}=\frac{2}{5} \delta \frac{1}{5}-\frac{3}{5} \delta$
For non-negativity, $\delta \leq 27 \delta \leq \frac{1}{3}$.
For basic variables to be in the range $\begin{array}{ll}\frac{54}{5}-\frac{2}{5} \delta \leq 11 & \delta \geq-\frac{1}{2} \\ \frac{1}{5}-\frac{3}{5} \delta \leq 9 & \delta \geq-\frac{44}{3}\end{array}$
Thus, the range is $-\frac{1}{2} \leq \delta \leq \frac{1}{3}$.
If $x_{4} \leq 5$ is replaced by $x_{4} \leq 5+\delta$, then right hand sides become $\frac{54}{5}+\frac{9}{5} \delta \frac{1}{5}+\frac{1}{5} \delta$
For non-negativity, $\delta \geq-\frac{54}{9} \quad \delta \geq-1$
For basic variables to be in range $\begin{array}{ll}\frac{54}{5}+\frac{9}{5} \delta \leq 11 & \delta \leq \frac{1}{9} \\ \frac{1}{5}+\frac{1}{5} \delta \leq 9 & \delta \leq 44\end{array}$
Thus, the range is $-1 \leq \delta \leq \frac{1}{9}$.
(ii) For the new coefficient, the coefficient in the z-row are
$z+\left(\frac{157}{5}-\frac{2}{5} \delta\right) x_{1}+\left(\frac{6}{5}+\frac{9}{5} \delta\right) x_{4}^{\prime}+\left(\frac{17}{5}-\frac{2}{5} \delta\right) s_{1}+\left(\frac{9}{5}+\frac{1}{5} \delta\right) s_{2}=78 \frac{1}{5}+\frac{54}{5} \delta$
Thus, we require that

$$
\begin{aligned}
\delta & \leq \frac{157}{2} \\
\delta & \geq-\frac{2}{3} \\
\delta & \leq \frac{17}{2} \\
\delta & \geq-9
\end{aligned}
$$

so the range is $-\frac{2}{3} \leq \delta \leq \frac{17}{2}$

