QUESTION

Solve the following linear programming problem using the bounded variable simplex method.

 $\begin{array}{lll} \text{Maximize} & z = -7x_1 + 2x_2 + 7x_3 - x_4 \\ \text{subject to} & 4x_1 - x_2 + x_3 + 2x_4 \leq 8 \\ & 6x_1 + 3x_2 + 2x_3 - 5x_4 \leq 25 \\ & 0 \leq x_1 \leq 1 \\ & 0 \leq x_2 \leq 11 \\ & 0 \leq x_3 \leq 9 \\ & 0 \leq x_4 \leq 5. \end{array}$

- (i) For the first constraint, give the range for the right-hand side within which the optimal basis remains unaltered. Also, perform this ranging analysis for the upper bound constraint $x_4 \leq 5$.
- (ii) If the objective function coefficient of x₂ changes to 2+δ, for what range of values of δ is the change in the maximum value of z proportional to δ?

ANSWER

Basic	z	x_1	x_2	x_3	x_4	s_1	s_2		Ratio	
s_1	0	4	-1	1	2	1	0	8	8	
s_2	0	6	3	2	-5	0	1	25	$\frac{25}{2}$	
	1	7	-2	-7	1	0	0	0		
Basic	z	x_1	x_2	x_3	x_4	s_1	s_2		Ratio	
x_3	0	4	-1	1	2	1	0	8	1	
s_2	0	-2	5	0	-9	-2	1	9	$\frac{9}{5}$	
	1	35	-9	0	15	7	0	56		
Perform	\sin	nplex	titera	ation	and	substi	itute	$x'_{3} =$	$=9-x_3.$	
Basic	z	x_1	x_2	x'_3	x_4	s_1	s_2			Ratio
x_2	0	-4	1	1	-2	-1	0	-	-8 + 9 = 1	
s_2	0	18	0	-5	1	3	1	4	9 - 45 = 4	
	1	-1	0	9	-3	-2	0	-1	6 + 81 = 65	
Basic	z	x_1	x_2	x'_3	x_4	s_1 s	\mathcal{S}_2	•		
x_2	0	32	1	-9	0	5	1	9	2	
x_4	0	18	0	-5	1	3	1	4	<u>Í</u>	
	1	53	0	-6	0	7	3	77		
Perform	\sin	nplex	itera	ation	and	substi	itute	x_4' =	$= 5 - x_4$	
Basic	z	x_1	x_2	x'_3	x'_4	s_1	s_2			
x_2	0	$-\frac{2}{5}$	1	0	$\frac{9}{5}$	$-\frac{2}{5}$	$\frac{1}{5}$		$\frac{9}{5} + 9 = \frac{54}{5}$	
$x_3;$	0	$-\frac{18}{5}$	0	1	$\frac{1}{5}$	$-\frac{3}{5}$		<u> </u> -	$-\frac{4}{5} + 1 = \frac{1}{5}$	
	1	$\frac{157}{5}$	0	0	$\frac{\check{6}}{5}$	$\frac{17}{5}$	$\frac{9}{5}$	72	$2\frac{1}{5} + 6 = 78\frac{1}{5}$	

Thus we have an optimal solution

$$x_1 = 0 \ x_2 = 10\frac{4}{5} \ x'_3 = \frac{1}{5} \ x'_4 = 0 \ x_3 = 8\frac{4}{5} \ x_4 = 5 \ z = 78\frac{1}{5}$$

(i) If the right hand side of the first constraint is $8 + \delta$, then the right hand sides in the final tableau are $\frac{54}{5} = \frac{2}{5}\delta \quad \frac{1}{5} - \frac{3}{5}\delta$ For non-negativity, $\delta \leq 27 \ \delta \leq \frac{1}{3}$. For basic variables to be in the range $\frac{54}{5} - \frac{2}{5}\delta \leq 11 \quad \delta \geq -\frac{1}{2}$ $\frac{1}{5} - \frac{3}{5}\delta \leq 9 \quad \delta \geq -\frac{44}{3}$ Thus, the range is $-\frac{1}{2} \leq \delta \leq \frac{1}{3}$. If $x_4 \leq 5$ is replaced by $x_4 \leq 5 + \delta$, then right hand sides become $\frac{54}{5} + \frac{9}{5}\delta \quad \frac{1}{5} + \frac{1}{5}\delta$ For non-negativity, $\delta \geq -\frac{54}{9} \quad \delta \geq -1$ For basic variables to be in range $\frac{54}{5} + \frac{9}{5}\delta \leq 11 \quad \delta \leq \frac{1}{9}$ Thus, the range is $-1 \leq \delta \leq \frac{1}{9}$.

(ii) For the new coefficient, the coefficient in the z-row are

$$z + \left(\frac{157}{5} - \frac{2}{5}\delta\right)x_1 + \left(\frac{6}{5} + \frac{9}{5}\delta\right)x_4' + \left(\frac{17}{5} - \frac{2}{5}\delta\right)s_1 + \left(\frac{9}{5} + \frac{1}{5}\delta\right)s_2 = 78\frac{1}{5} + \frac{54}{5}\delta$$

Thus, we require that

$$\delta \leq \frac{157}{2}$$
$$\delta \geq -\frac{2}{3}$$
$$\delta \leq \frac{17}{2}$$
$$\delta \geq -9$$

so the range is $-\frac{2}{3} \le \delta \le \frac{17}{2}$