## QUESTION

Show that the following linear programming problem can be formulated as a minimum cost network flow problem.

```
Minimize z = 5x_1 + 3x_2 + 2x_3 + 4x_4 + 7x_5 + 5x_6 + 5x_7 + 3x_8 + 6x_9 + 5x_{10}

subject to x_1, \dots, x_{10} \ge 0

x_1 + x_2 = 12

x_2 + x_3 + x_4 = 10

x_4 + x_5 = 13

x_5 + x_6 = 16

x_7 + x_8 = 6

x_8 + x_9 \le 9

x_9 + x_{10} \ge 8

x_3 + x_7 + x_{10} = 20.
```

Starting with a solution in which  $x_1$ ,  $x_2$ ,  $x_5$ ,  $x_6$ ,  $x_8$  and  $x_{10}$  take positive values, and the constraints  $x_8 + x_9 \le 9$  and  $x_9 + x_{10} \ge 8$  are satisfied as strict inequalities, use the network simplex method to solve the problem.

## ANSWER

Adding slack variables and multiplying some constraints by -1, the formulation is

Minimize 
$$z = 5x_1 + 3x_2 + 2x_3 + 4x_4 + 7x_5 + 5x_6 + 5x_7 + 3x_8 + 6x_9 + 5x_{10}$$
  
subject to  $x_i \ge 0$   $i = 1, \dots, 10$   
(1)  $x_1 + x_2 = 12$   
(2)  $-x_2 - x_3 - x_4 = -10$   
(3)  $x_4 + x_5 = 13$   
(4)  $-x_5 - x_6 = -16$   
(5)  $-x_7 - x_8 = -6$   
(6)  $x_8 + x_9 + s_1$   
(7)  $-x_9 - x_{10} + s_2 = -8$   
(8)  $x_3 + x_9 + x_10 = 10$   
(9)  $-x_1 + x_6 - s_1 - s_2 = -14$ 

(where the last redundant constraint is obtained by summing the others).

The network is



The initial tree solution is



| Non-basic | $y_i + c_{ij} - y_j$ |
|-----------|----------------------|
| (3,2)     | 4                    |
| (8,2)     | -1                   |
| (8,5)     | -3                   |
| (6,7)     | 6                    |

Entering arc is (8,5)



 $\theta = 6$ Leaving arc is (6,5)



| Non-basic               | $y_i + c_{ij} - y_j$ |
|-------------------------|----------------------|
| (3,2)                   | 4                    |
| (8,2)                   | -1                   |
| (6,5)                   | 3                    |
| (6,7)                   | 6                    |
| Entering arc is $(8,2)$ |                      |



Leaving arc is (9,7)



| Non-basic | $y_i + c_{ij} - y_j$ |
|-----------|----------------------|
| (3,2)     | 4                    |
| (6,5)     | 2                    |
| (6,7)     | 5                    |
| (9,7)     | 1                    |

Thus, we have an optimal solution

$$x_1 = 8 x_2 = 4 x_3 = 6 x_4 = 0 x_5 = 13 x_6 = 3 x_7 = 6 x_8 = 0 x_9 = 0 x_{10} = 8 z = 240$$