Question

Prove the rule that a determinant vanishes when two rows are identical.

Answer

Let my determinant be \triangle where

$$\triangle = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 by rule that interchanging 2 rows means $\triangle \to -\triangle$ and

interchanging first 2 rows

$$= - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix} = -\triangle$$

Thus

$$\triangle = -\triangle$$

$$\Rightarrow 2\triangle = 0$$

$$\Rightarrow \triangle = 0$$

Hence 2 rows identical $\Rightarrow \triangle = 0$.