Exam Question

Topic: Double Integral in Polars
Evaluate the double integral

$$
\iint_{R} \ln \left(1+x^{2}+y^{2}\right) d(x, y)
$$

where R is the region given by

$$
\left\{(x, y): x^{2}+y^{2} \leq 1 \text { and } x \leq 0\right\} .
$$

Given your answer both in terms of \ln and also as a decimal correct to 3 places.

Solution

Changing to polar coordinates gives

$$
I=\int_{0}^{1} d r \int_{\pi / 2}^{3 \pi / 2} \ln \left(1+r^{2}\right) \cdot r d \theta=\pi \int_{0}^{1} r \ln \left(1+r^{2}\right) d r
$$

Let $1+r^{2}=u ; \quad 2 r d r=d u$

$$
\text { So } \begin{aligned}
I & =\pi \int_{1}^{2} \ln u d u=\frac{\pi}{2}[u \ln u-u]_{1}^{2} \\
& =\frac{\pi}{2}[2 \ln 2-2-1 \ln 1+1]=\frac{\pi}{2}[2 \ln 2-1]=0.607 \quad(3 \text { d.p. })
\end{aligned}
$$

