Exam Question

Topic: Double Integral

Let I denote the repeated integral

$$
\int_{0}^{1} d x \int_{0}^{2 x-x^{2}} \exp \left[(1-y)^{3 / 2}\right] d y
$$

Reverse the order of integration and hence evaluate I. Give your answer in terms of e, and also as a decimal correct to 3 places.

Solution

Now $y=2 x-x^{2} \Rightarrow x=1 \pm \sqrt{1-y}$. But $0 \leq x \leq 1$ and so $x=1-\sqrt{1-y}$. So reversing the order of integration gives

$$
\begin{aligned}
I & =\int_{0}^{1} d y \int_{1-\sqrt{1-y}}^{1} \exp \left[(1-y)^{3 / 2}\right] d x=\int_{0}^{1}\left[x \exp (1-y)^{3 / 2}\right]_{1-\sqrt{1-y}}^{1} \\
& =\int_{0}^{1} \sqrt{1-y} \exp \left[(1-y)^{3 / 2}\right] d y=\left[\frac{2}{3}(-1) \exp (1-y)^{3 / 2}\right]_{0}^{1} \\
& =\frac{2}{3}(-1+\mathrm{e})=1.146 \quad 3 \text { d.p. }
\end{aligned}
$$

