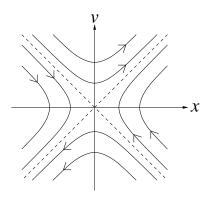
Question

Write each of the following second order differential equation as a pair of first order equations for x(t) and v(t) (where v = dx/dt). Hence obtain a differential equation for v as a function of x. Obtain the general solution of this equation and hence roughly sketch the phase-plane.

$$1. \ \frac{d^2x}{dt^2} - x = 0$$


$$2. \ \frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = 0$$

3.
$$\frac{d^2x}{dt^2} - x^2 = 0 \qquad (*)$$

4.
$$\frac{d^2x}{dt^2} + \frac{dx}{dt} - \frac{dx}{dt}e^x = 0$$
 (*)

Answer

a)
$$\frac{dx}{dt} = v$$
, $\frac{dv}{dt} = x \Rightarrow \frac{dx}{dt} \frac{dt}{dv} = \frac{v}{x} \Rightarrow \frac{dx}{dv} = \frac{v}{x}$
This is separable $\int x dx = \int v dv \Rightarrow \frac{1}{2}x^2 = \frac{1}{2}v^2 + A$
 $\Rightarrow x^2 - v^2 = 2A$, this is a hyperbola.

phase-plane

b)
$$\frac{dx}{dt} = v \Rightarrow \frac{dv}{dt} - 2v + x = 0$$

$$\frac{dv}{dt} = 2v - x, \quad \frac{dx}{dt} = v$$

$$\Rightarrow \frac{dv}{dx} = \frac{2v - x}{v} = 2 - \frac{x}{v}$$
This is homogeneous, so $v = xV \Rightarrow x\frac{dV}{dx} + V = 2 - \frac{1}{v}$

$$x\frac{dV}{dx} = -V + 2 - \frac{1}{V}, \text{ this is separable.}$$

$$\int \frac{-VdV}{V^2 - 2V + 1} = \int \frac{1}{x}dx$$

$$\int \frac{-\frac{1}{2}(2V - 2)}{V^2 - 2V + 1} - \frac{1}{(V - 1)^2dV} = \int \frac{1}{x}dx$$

$$-\frac{1}{2}\ln\left(V^2 - 2V + 1\right) + \frac{1}{V - 1} = \ln x + A$$

$$\frac{e^{\frac{1}{V - 1}}}{\sqrt{V^2 - 2V + 1}} = cx \Rightarrow \frac{e^{\frac{x}{v - x}}}{\sqrt{\left(\frac{x}{v}\right)^2 - \frac{2v}{v} + 1}} = cx$$

For the phase plane use isoclines / direction fields etc.

DIAGRAM

c)
$$\frac{dx}{dt} = v \Rightarrow \frac{dv}{dt} - x^2 = 0$$

 $\frac{dv}{dt} = x^2$, $\frac{dx}{dt} = v \Rightarrow \frac{dv}{dx} = \frac{x^2}{v}$, this is separable.
 $\int v dv = \int x^2 dx$
 $\Rightarrow \frac{1}{2}v^2 = \frac{1}{3}x^3 + A$

Can draw phase plane using isoclines and direction fields.

DIAGRAM

d)
$$\frac{dx}{dt} = v \Rightarrow \frac{dv}{dt} + v - ve^x = 0$$

 $\frac{dv}{dt} = -v + ve^x, \quad \frac{dx}{dt} = v \Rightarrow \frac{dv}{dx} = -1 + e^x$

$$\Rightarrow v = -x + e^x + B$$

Can draw phase plane by graph or isoclines and direction field.

DIAGRAM