Question

Find the solution of the initial value problem $\frac{dx}{dt} = \frac{2}{3}\frac{1}{x^2} = \frac{2}{3}t \times \frac{1}{x^2}; \text{ with } x(0) = 0$

Answer

$$\frac{dx}{dt} = \frac{2}{3}\frac{1}{x^2} = \frac{2}{3}t \times \frac{1}{x^2}$$

Separable:

$$\Rightarrow x^{2} dx = \frac{2}{3} t dt$$

$$\Rightarrow \int x^{2} dx = \frac{2}{3} \int t dt$$

$$\Rightarrow \frac{1}{3} x^{3} = \frac{1}{3} t^{2} + \text{constant}$$

$$\Rightarrow x^{3} = t^{2} + \text{constant}$$

Now x(0) = 0, so constant is zero Solution is $x^3 = t^2 \Rightarrow \quad x = t^{\frac{2}{3}}$

Solution is
$$x^3 = t^2 \Rightarrow x = t^3$$