Question

Find the general solution of the differential equation

$$
t \frac{d x}{d t}=x+\frac{1}{2} t \sec ^{2} \frac{x}{2 t}
$$

Answer

$t \frac{d x}{d t}=x+\frac{1}{2} t \sec ^{2} \frac{x}{2 t}$
Rewrite as $\frac{d x}{d t}=\frac{x}{t}+\frac{1}{2} \sec ^{2} \frac{x}{2 t}$
This is of the form $\frac{d x}{d t}=f\left(\frac{x}{t}\right)$ So let $y=\frac{x}{t}$
$\Rightarrow \frac{d x}{d t}=t \frac{d y}{d t}+y=y+\frac{1}{2} \sec ^{2} \frac{1}{2} y$
So we can rewrite as

$$
t \frac{d y}{d t}=\frac{1}{2} \sec ^{2} \frac{1}{2} y
$$

Cross Multiply

$$
\frac{d t}{t}=\frac{2}{\sec ^{2} \frac{1}{2} y} d y=2 \cos ^{2} \frac{1}{2} y d y
$$

Now $2 \cos ^{2} \frac{y}{2}=1+\cos y$ so the differential equation becomes

$$
\int \frac{d t}{t}=\int(1+\cos y) d y
$$

Integrating

$$
\begin{aligned}
\ln |t|= & y+\sin y+\text { constant } \\
& t=A e^{y+\sin y}
\end{aligned}
$$

with A as a constant.

