Question

Find the solution of the initial value problem

$$x^2t\frac{dx}{dt} = x^3 + t^3$$

subject to x(1) = 0

Answer

$$x^{2}t\frac{dx}{dt} = x^{3} + t^{3} \Rightarrow \frac{dx}{dt} = \frac{x}{t} + \left(\frac{t}{x}\right)^{2} = f\left(\frac{x}{t}\right)$$
This is of the form $y = \frac{x}{t} \Rightarrow \frac{dx}{dt} = t\frac{dy}{dt} + y = y + \frac{1}{y^{2}} \Rightarrow t\frac{dy}{dt} = \frac{1}{y^{2}}$
Thus $\int y^{2}dy = \int \frac{dt}{t} \Rightarrow \frac{1}{3}y^{3} = \ln|t| + \text{constant}$
Now apply the initial condition $x(1) = 0$ for $t > 1$ so $|t| = t$

$$y(1) = \frac{x(1)}{t=1} = x(1) \text{ and } \ln 1 = 0 \Rightarrow \text{constant} = 0$$
Therefore
$$x^{3} = 3 \ln t \Rightarrow x = \sqrt[3]{3 \ln t}$$