Question

Find the general solution of the differential equation

$$
\frac{d x}{d t}+3 x=e^{-2 t}
$$

Answer

$$
\frac{d x}{d t}+3 x=e^{-2 t}
$$

Compare with the model equation $\frac{d x}{d t}+p(t) x=q(t)$
Multiply by integrating factor $g(t)=e^{\int p(t) d t}$ so that $\frac{d}{d t}[x g(t)]=g(t) q(t)$
Here the integrating factor is $g(t)=e^{\int 3 d t}=e^{3 t}$

Thus

$$
\begin{aligned}
e^{3 t} \frac{d x}{d t}+3 e^{3 t} x & =e^{3 t} e^{-2 t}=e^{3 t-2 t}=e^{t} \\
\frac{d}{d t}\left(x e^{3 t}\right) & =e^{t}
\end{aligned}
$$

Hence
Finally

$$
\begin{aligned}
x e^{3 t} & =\int e^{t} d t=e^{t}+C \\
\Rightarrow x & =e^{-2 t}+C e^{-3 t}
\end{aligned}
$$

Where C is a constant.

