Partial Differentiation Functions of more than one variable

Question

For the given functions $f(x, y, z)$, describe the level surfaces.
(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}$
(b) $f(x, y, z)=x+2 y+3 z$
(c) $f(x, y, z)=x^{2}+y^{2}$
(d) $f(x, y, z)=\frac{x^{2}+y^{2}}{z^{2}}$
(e) $f(x, y, z)=|x|+|y|+|z|$

Answer

(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}$

The level surface $f(x, y, z)=c>0$ is a sphere of radius \sqrt{c} centred at the origin.
(b) $f(x, y, z)=x+2 y+3 z$

The level surfaces are parallel planes with common normal vector $\underline{i}+$ $2 \underline{j}+3 \underline{k}$.
(c) $f(x, y, z)=x^{2}+y^{2}$

The level surface $f(x, y, z)=c>0$ is a circular cylinder of radius \sqrt{c} with axis along the z-axis.
(d) $f(x, y, z)=\frac{x^{2}+y^{2}}{z^{2}}$

The equation $f(x, y, z)=c$ can be rewritten $x^{2}+y^{2}=C^{2} z^{2}$. The level surfaces are circular cones with vertices at the origin and axes along the z-axis.
(e) $f(x, y, z)=|x|+|y|+|z|$

The level surface $f(x, y, z)=c>0$ is the surface 4 of the octohedron with vertices $(\pm c, 0,0),(0, \pm c, 0)$ and $(0,0, \pm c)$. (An octohedron is a solid with eight planar faces.)

