Partial Differentiation Functions of more than one variable

Question

For the given functions f(x, y, z), describe the level surfaces.

(a)
$$f(x, y, z) = x^2 + y^2 + z^2$$

(b)
$$f(x, y, z) = x + 2y + 3z$$

(c)
$$f(x, y, z) = x^2 + y^2$$

(d)
$$f(x, y, z) = \frac{x^2 + y^2}{z^2}$$

(e)
$$f(x, y, z) = |x| + |y| + |z|$$

Answer

(a) $f(x, y, z) = x^2 + y^2 + z^2$

The level surface f(x, y, z) = c > 0 is a sphere of radius \sqrt{c} centred at the origin.

(b) f(x, y, z) = x + 2y + 3z

The level surfaces are parallel planes with common normal vector $\underline{i} + 2\underline{j} + 3\underline{k}$.

(c) $f(x, y, z) = x^2 + y^2$

The level surface f(x, y, z) = c > 0 is a circular cylinder of radius \sqrt{c} with axis along the z-axis.

(d)
$$f(x, y, z) = \frac{x^2 + y^2}{z^2}$$

The equation f(x, y, z) = c can be rewritten $x^2 + y^2 = C^2 z^2$. The level surfaces are circular cones with vertices at the origin and axes along the z-axis.

(e)
$$f(x, y, z) = |x| + |y| + |z|$$

The level surface f(x, y, z) = c > 0 is the surface4 of the octohedron with vertices $(\pm c, 0, 0)$, $(0, \pm c, 0)$ and $(0, 0, \pm c)$. (An octohedron is a solid with eight planar faces.)