Question

For each of the functions given below, determine whether or not $\lim _{x \rightarrow 0} f(x)$ exists; if the limit does exist, determine its value wherever possible.

1. $f(x)=\sin (x) \sin \left(\frac{1}{x}\right)$, for $x \neq 0$;
2. $f(x)=\cos (x)$ for $x \neq 0$, and $f(0)=2$;
3. $f(x)=[3 x+1]$ (where $[x]$ is the largest integer or floor function);
4. $f(x)=\sin \left(\sin \left(\frac{1}{x}\right)\right)$, for $x \neq 0$;
5. $f(x)=\cos (x)$, if x is a positive rational multiple of π, and $f(x)=1$ otherwise;
6. $f(x)=\frac{\sin (x)}{|x|}$ for $x \neq 0$;

Answer

1. use the squeeze law. We have that $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ for all $x \neq 0$, and that $\lim _{x \rightarrow 0} \sin (x)=0$. So, we can bound $f(x)$ below by $-\sin (x)$ and above by $\sin (x)$. Since $\lim _{x \rightarrow 0}-\sin (x)=\lim _{x \rightarrow 0} \sin (x)=0$, we have that $\lim _{x \rightarrow 0} \sin (x) \sin \left(\frac{1}{x}\right)=0$. [Note that the fact that $f(x)$ is not defined at 0 does not matter, since evaluating $\lim _{x \rightarrow 0} f(x)$ depends only on what's happening with $f(x)$ near 0 , and not at all on what's happening at 0.]
2. since $\lim _{x \rightarrow 0} \cos (x)=1$, and since $f(x)=\cos (x)$ except at 0 , we have that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \cos (x)=1$. [This is another reflection of the fact that $\lim _{x \rightarrow 0} f(x)$ does not care about the value of $f(x)$ at 0 , but only on the values of $f(x)$ near 0 .]
3. note that $f(x)=0$ for $-\frac{1}{3}<x \leq 0$, and so $\lim _{x \rightarrow 0-} f(x)=0$. Also, $f(x)=1$ for $0<x<\frac{1}{3}$, and so $\lim _{x \rightarrow 0+} f(x)=1$. Since $\lim _{x \rightarrow 0+} f(x) \neq$ $\lim _{x \rightarrow 0-} f(x)$, we see that $\lim _{x \rightarrow 0} f(x)$ does not exist.
4. as $x \rightarrow 0+$, we see that $\frac{1}{x} \rightarrow \infty$, and so $\sin \left(\frac{1}{x}\right)$ oscillates between -1 and 1. Hence, as $x \rightarrow 0+$, we have that $f(x)$ oscillates between $\sin (-1)$ and $\sin (1)$, and so $\lim _{x \rightarrow 0+} f(x)$ does not exist. Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.
5. we apply the squeeze rule, since $\cos (x) \leq f(x) \leq 1$ for all x near 0 . Since both $\lim _{x \rightarrow 0} \cos (x)=1$ and $\lim _{x \rightarrow 0} 1=1$, we have that $\lim _{x \rightarrow 0} f(x)=1$.
6. to evaluate this limit, we recall from calculus that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$, and so by the lemma below, we have that $\lim _{x \rightarrow 0+} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0-} \frac{\sin (x)}{x}=1$. Lemma:
$\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=L$.
For $x>0$, we have that $|x|=x$, and so $\lim _{x \rightarrow 0+} \frac{\sin (x)}{|x|}=\lim _{x \rightarrow 0+} \frac{\sin (x)}{x}=$ 1. However, for $x<0$, we have that $|x|=-x$, and so $\lim _{x \rightarrow 0-} \frac{\sin (x)}{|x|}=$ $-\lim _{x \rightarrow 0-} \frac{\sin (x)}{x}=-1$. Since $\lim _{x \rightarrow 0+} \frac{\sin (x)}{|x|} \neq \lim _{x \rightarrow 0-} \frac{\sin (x)}{|x|}$, we see that $\lim _{x \rightarrow 0} \frac{\sin (x)}{|x|}$ does not exist.
