Question

Show that any non-empty open set in \mathbf{R}^2 (or \mathbf{R}^n) can be expressed as the union of a countable collection of closed rectangles.

Answer

Consider the collection \mathcal{C} of all rectangles $R = \{\mathbf{x} | a_r \leq x_r \leq b_r\}$ contained in S, an open set, where a_r and b_r are rational. Then \mathcal{C} is countable and $\bigcup_{\mathcal{C}} R \subseteq S$. If $x \in S$ then there is a neighbourhood $N_{\epsilon}(x) \subseteq S$

 $N_{\epsilon}(x)$ contains a member of \mathcal{C} containing x. So $x \epsilon \bigcup_{\mathcal{C}} R$, therefore $S = \bigcup_{\mathcal{C}} R$