Question

Show that any non-empty open set in $\mathbf{R}^{\mathbf{2}}$ (or $\mathbf{R}^{\mathbf{n}}$) can be expressed as the union of a countable collection of closed rectangles.

Answer

Consider the collection \mathcal{C} of all rectangles $R=\left\{\mathbf{x} \mid a_{r} \leq x_{r} \leq b_{r}\right\}$ contained in S, an open set, where a_{r} and b_{r} are rational.
Then \mathcal{C} is countable and $\bigcup_{\mathcal{C}} R \subseteq S$.
If $x \epsilon S$ then there is a neighbourhood $N_{\epsilon}(x) \subseteq S$
$N_{\epsilon}(x)$ contains a member of \mathcal{C} containing x.
So $x \epsilon \bigcup_{\mathcal{C}} R$, therefore $S=\bigcup_{\mathcal{C}} R$

