Question

(i) Using tensorial notation, or otherwise, prove the vector identities

$$\nabla \cdot (\phi \underline{a}) = \phi \nabla \cdot \underline{a} + (\underline{a} \cdot \nabla) \phi$$

$$\nabla \times (\nabla \times \underline{a}) = -\nabla^2 \underline{a} + \nabla (\nabla \cdot \underline{a})$$

$$\underline{a} \times (\nabla \times \underline{a}) = \nabla (\underline{a}^2 / 2) - (\underline{a} \cdot \nabla) \underline{a}$$

for a general suitably differentiable scalar function ϕ and vector \underline{a} .

- (ii) Explain briefly the major differences between the 'Eulerian' and 'Lagrangian' descriptions of flow. What does it mean to say that a fluid flow is 'steady'? For a fluid flow with velocity \underline{q} define $\underline{\omega}$, the *vorticity*, and give the condition that the flow is *irrotational*.
- (iii) YOU MAY ASSUME that the Navier-Stokes equations for an unsteady viscous flow are given by

$$\begin{array}{rcl} \underline{q}_t + (\underline{q}.\nabla)\underline{q} & = & -\frac{1}{\rho}\nabla\underline{p} + \nu\nabla^2\underline{q} + \underline{F} \\ \nabla.\underline{q} & = & 0 \end{array}$$

where ρ denotes the (constant) density, ν the (constant) kinematic viscosity, \underline{p} the pressure and \underline{F} the body force. Show that for an inviscid irrotational flow with a conservative body force the quantity

$$\phi_t + \frac{1}{2}|\underline{q}|^2 + \chi$$

is a function of time alone, identifying the quantities ϕ and χ . Show also that for a steady (but not necessarily irrotational) inviscid flow the quantity

$$\frac{\underline{p}}{\rho} + \frac{1}{2}|\underline{q}|^2 + \chi$$

is constant along both streamlines and vortex lines in the flow.

Answer

(i)

$$div(\phi\underline{a}) = \frac{\partial}{\partial a_{j}}(\phi a_{j}) = \frac{\partial\phi}{\partial x_{j}}a_{j} + \phi\frac{\partial a_{j}}{\partial x_{j}}$$

$$= (\underline{a}.\nabla)\phi + \phi div(\underline{a})$$

$$\nabla \times (\nabla \times \underline{a}) = \epsilon_{ijk}\frac{\partial}{\partial x_{j}}(\nabla \times \underline{a})_{k} = \epsilon_{ijk}\frac{\partial}{\partial x_{j}}\epsilon_{kpq}\frac{\partial}{\partial x_{p}}a_{q}$$

$$= \epsilon_{ijk}\epsilon_{kpq}\frac{\partial^{2}a_{q}}{\partial x_{j}\partial x_{p}} = \epsilon_{kij}\epsilon_{kpq}\frac{\partial^{2}a_{q}}{\partial x_{j}\partial x_{p}} = (\delta_{ip}\delta_{jq} - \delta_{jp}\delta_{iq})\frac{\partial^{2}a_{q}}{\partial x_{j}\partial x_{p}}$$

$$= \frac{\partial^{2}}{\partial x_{j}\partial x_{i}} - \frac{\partial^{2}a_{i}}{\partial x_{j}\partial x_{j}} = \nabla(div(\underline{a})) - \nabla^{2}\underline{a}$$

$$\underline{a} \times (\nabla \times \underline{a}) = \epsilon_{ijk}a_{j}(\nabla \times \underline{a})_{k} = \epsilon_{ijk}a_{j}\epsilon_{kpq}\frac{\partial a_{q}}{\partial x_{p}}$$

$$= \epsilon_{kij}\epsilon_{kpq}a_{j}\frac{\partial a_{q}}{\partial x_{p}} = (\delta_{ip}\delta_{jq} - \delta_{jp}\delta_{iq})a_{j}\frac{\partial a_{q}}{\partial x_{p}}$$

$$= a_{j}\frac{\partial a_{j}}{\partial x_{i}} - a_{j}\frac{\partial a_{i}}{\partial x_{j}} = \nabla(\frac{1}{2}\underline{a}^{2}) - (\underline{a}\nabla)\underline{a}$$

(ii) EULERIAN: We try to find the fluid velocity \underline{q} as a function of \underline{x} and t. Attention is focussed on a particular position in the flow rather than on a particular fluid particle.

LAGRANGIAN: We try to find the fluid motion \underline{x} as a function of \underline{X} and t, where \underline{X} denotes the positions of fluid particles at t=0. Attention is focussed on a given fluid particle following the flow.

A flow is STEADY if \underline{q} does not depend on t.

If a flow has velocity q then $\underline{\omega} = curl(q)$

For IRROTATIONAL FLOW $\underline{\omega} = 0$

(iii) We have

$$\underline{q}_t + (\underline{q}.\nabla)\underline{q} = -\frac{1}{\rho}\nabla p + \nu\nabla^2\underline{q} + \underline{F}, \quad \nabla.\underline{q} = 0$$

For irrotational flow, define $\underline{q}=\nabla\phi$ and for a conservative body force define $\underline{F}=-\nabla\psi$. Then

 $(\nabla \phi)_t + (\underline{q}.\nabla)\underline{q} = -\nabla \left(\frac{p}{\rho}\right) - \nabla \psi$ since the fluid is inviscid and ρ is constant.

$$\Rightarrow (\nabla \phi)_t + \nabla \left(\frac{\underline{q}^2}{2}\right) = \underline{q} \times (\nabla \times \underline{q}) + \nabla \left(\frac{\underline{p}}{\rho}\right) + \nabla (\psi) = 0$$

But $\nabla \times \underline{q} = 0$ so

 $\nabla(\phi_t + \frac{1}{2}\underline{q}^2 + \frac{p}{\rho} + \psi) = 0$. The quantity in brackets is independent of x,y and z and thus

$$\phi_t + \frac{1}{2} |\underline{q}|^2 + \frac{p}{\rho} + \psi = f(t)$$
 only

 $(\phi = \text{velocity potential}), \psi = \text{force potential})$

For a steady inviscid flow $(q.\nabla)q = -\nabla(p/\rho) - \nabla\psi$

$$\Rightarrow \nabla(q^2/2) - q \times (\nabla \times q) = -\nabla(p/\rho) - \nabla(\psi)$$

$$\Rightarrow \underline{q} \times \underline{\omega} = \nabla(\underline{q}^2/2 + p/\rho + \psi)$$

Thence $\underline{q}.(\underline{q} \times \underline{\omega}) = 0 = (\underline{q}.\nabla)(\underline{q}^2/2 + p/\rho + \psi)$ and so $p/\rho + \frac{1}{2}|\underline{q}|^2 + \psi$ is constant along streamlines in the flow.

Also $\underline{\omega}.(q \times \underline{\omega}) = 0$ and so

 $\underline{q}^2/2 + p/\rho + \psi$ is constant along vortex lines in the flow.