Question

Verify thet, if U is a constant, then the stream function $\phi(x, y)=U x y$ represents two-dimensional inviscid flwo with no bsy forces in the region $\{(x, y):(x \geq 0),(y \geq 0)\}$ bounded by solid walls at $x=0$ and $y=0$. Derive the (dimensional) boundary layer equations for flow near to the solid wall $y=0$ in the form

$$
\begin{aligned}
u u_{x}+v u_{y} & =x U^{2}+\nu u_{y y} \\
u_{x}+v_{y} & =0
\end{aligned}
$$

where the fluid velocity q is given by (u, v) and ν denotes the constant kinematic viscosity of the fluid, giving suitable boundary conditions for these equations.
Show that these equations possess a similarity solution of the form

$$
\begin{aligned}
\phi & =\sqrt{U \nu} x^{k} f(\mu) \\
\mu & =\sqrt{\frac{U y^{2}}{\nu}}
\end{aligned}
$$

provided k is suitably chosen. Obtain the ordinary differential equation satisfied by f and state boundary conditions that f must satisfy. Show further that, when $\mu \rightarrow 0, f \sim-\mu^{3} / 6$.

Answer

If $\psi=U x y$ then $\nabla^{2} \psi=0+0=0$
Also

$$
\begin{aligned}
u=\psi_{y} & =U x \\
v=-\psi_{x} & =-U y
\end{aligned}
$$

so $u=0$ on $x=0$ and $v=0$ on $y=0$ (nv if they wanted to they could also show that this satisfies the Euler equations with $p=-\frac{\rho U^{2}}{2}\left(x^{2}+y^{2}\right)+$ constant $)$ Now use the N/S equations in component form:-
Scale and non-dimensionalise using

$$
\begin{aligned}
u & =U u^{\prime} \\
v & =\delta U v^{\prime} \\
x & =L x^{\prime} \\
y & =\delta L y^{\prime} \\
p & =\rho U_{\infty}^{2} p^{\prime}
\end{aligned}
$$

to look in the boundary layer near $y=0$ where $\delta \ll 1$ is to be found.

$$
\begin{aligned}
\Rightarrow \quad \frac{U^{2}}{L}\left(u u_{x}+v u_{y}\right) & =-\frac{U^{2}}{L} p_{x}+\nu\left(\frac{U}{L^{2}} u_{x x}+\frac{U}{L^{2} \delta^{2}} u_{y y}\right) \\
\frac{\delta U^{2}}{L}\left(u v_{x}+v v_{y}\right) & =-\frac{U^{2}}{L \delta} p_{y}+\nu\left(\frac{\delta U}{L^{2}} v_{x} x+\frac{U}{L^{2} \delta}\right) \\
u_{x}+v_{y} & =0
\end{aligned}
$$

(all bars dropped)
So re-arranging

$$
\begin{aligned}
u u_{x}+v u_{y} & =-p_{x}+\frac{1}{R e}\left(u_{x x}+\frac{1}{\delta^{2}} u_{y y}\right) \\
\delta\left(u v_{x}+v v_{y}\right) & =-\frac{1}{\delta} p_{y}+\frac{1}{R e}\left(\delta v_{x x}+\frac{1}{\delta} v_{y y}\right) \\
u_{x}+v_{y} & =0
\end{aligned}
$$

The only chance for a non-trivial balance that retains a 2 nd-order system is to choose $\delta^{2} r e=O(1)$.
So take $\delta=\frac{1}{\sqrt{R e}} \Rightarrow$ to lowest order

$$
\begin{align*}
u u_{x}+v u_{y} & =-p_{x}+u_{y y} \\
0 & =-p_{y} \tag{1}\\
u_{x}+v_{y} & =0
\end{align*}
$$

In the outer flow (dimensionally) $p+\frac{1}{2} \rho \underline{q}^{2}=$ constant
Now $\underline{q}=\left(U_{x},-U_{y}\right)$ so outside the boundary layer (near $y=0$)

$$
\begin{array}{rlrl}
& & \underline{q} & \sim U_{x} \hat{\underline{e}}_{x} \\
\Rightarrow & p_{x}+\rho\left(U_{x}\right) \bar{U} & =0 \\
\Rightarrow \quad & -p_{x} / \rho & =U^{2} x
\end{array}
$$

So redimensionalising (1) gives

$$
\begin{aligned}
& \begin{array}{l}
u u_{x}+v u_{y}=U^{2} x+u_{y y} \nu \\
u_{x}+v_{y}
\end{array} \\
& \left.\begin{array}{l}
\text { B/C's } \\
\text { (No slip) }
\end{array}\right\} \\
& \quad \begin{array}{l}
u=v=0 \text { at } y=0 \\
\text { (Matching) }
\end{array} \\
& u \rightarrow U_{x} \text { as } y \rightarrow \infty
\end{aligned}
$$

Similarity solutions:- use

$$
\begin{aligned}
& \psi=\sqrt{U \nu} x^{k} f \eta \\
& \eta=\left(U y^{2} / \nu\right)^{\frac{1}{2}}=\sqrt{\frac{U}{\nu}} y \\
& \Rightarrow \quad \begin{aligned}
u & =U x^{k} f^{\prime} \\
u_{y} & =U \sqrt{\frac{U}{\nu}} x^{k} f^{\prime \prime} \\
u_{y y} & =\frac{U^{2}}{\nu} f^{\prime \prime \prime} x^{k} \\
v & =-\sqrt{U \nu} k x^{k-1} f \\
u_{x} & =k U x^{k-1} f^{\prime}
\end{aligned} \\
& \Rightarrow U x^{k} f^{\prime}\left(k U x^{k-1} f^{\prime}\right)-\sqrt{U \nu} k x^{k-1} f \frac{U^{\frac{3}{2}}}{\sqrt{\nu}} x^{k} f^{\prime \prime}=U^{2} x+\frac{U^{2}}{\nu} x^{k} f^{\prime \prime \prime} \nu \\
& k U^{2} x^{2 k-1} f^{\prime 2}-k U^{2} x^{2 k-1} f f^{\prime \prime}=U^{2} x+\frac{U^{2}}{\nu} \nu x^{k} f^{\prime \prime \prime}
\end{aligned}
$$

Obviously the similarity solution can only work if $k=1$, in which case the ODE is

$$
U^{2} f^{\prime 2}-U^{2} f f^{\prime \prime}=U^{2}+U^{2} f^{\prime \prime \prime}
$$

i.e.

$$
f^{\prime \prime \prime}+f f^{\prime \prime}+1-f^{\prime 2}=0
$$

Suitable B/C's (No slip) $\quad f^{\prime}(0)=f(0)=0$
(Matching)
$f^{\prime}(\infty)=1$
Now consider the ODE for small η. Since for small values of η, f and f^{\prime} are small, the leading order balance in the equation will be

$$
\begin{gathered}
f^{\prime \prime \prime}+1=0 \\
\Rightarrow f^{\prime \prime} \sim-\eta+A \\
f^{\prime} \sim-\eta^{2} / 2+A \eta+B \\
f \sim-\eta^{3} / 6+A \eta^{2} / 2+B \eta+C
\end{gathered}
$$

But since $\left.f(0)=f^{\prime}(0)=\right), A=B=0$. Also f is a stream function so we can take $C=0$

$$
\Rightarrow f \sim-\frac{\eta^{3}}{6} \quad(\eta \sim 0)
$$

