Question

A two-dimensional viscous unsteady flow takes place in the (x, y)-plabe. Ther are no body forces. The fluid is incompressible and hsas constant density ρ and constant dynamic viscosity μ. Show that, when the Reynolds number Re is much less than one, the stream function $\phi(x, y)$ satisfies the biharmonic equation

$$
\nabla^{4} \phi=0
$$

Explain briefly why, even for unsteady flwo, there are no time derivatives in this equation and comment on how temporal changes would enter the problem for a truly unsteady flow.
Steady low Reynolds number two-dimensional flow takes place in a wedge of semi-angle α, the flow beinh driven by a shearing mechanism far away from the corner of the wege. Give the boundary condtions that must be satisfied by the stream function ϕ and its derivatives on the wedge walls $\theta= \pm \alpha$, where $(r, \theta 00$ are plane polar coordinates. Verify that a flow with stream function

$$
\phi(r, \theta)=r^{\lambda}(A \cos \lambda \theta+B \cos (\lambda-2) \theta)
$$

is possible for non-zero A and B only if the constant λ satisfies

$$
(\lambda-2) \tan ((\lambda-2) \alpha)=\lambda \tan \lambda \alpha .
$$

[If you wish you may use, without proof, the fact that in cylindrical polar coordinates (r, θ, z)

$$
\left.\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}} .\right]
$$

Answer

We have 2/D unsteady flow in the (x, y)-plane, so as usual the continuity equation is automatically satisfied by $\psi=\psi(x, y, t)$ where $u=\psi_{y}, v=-\psi_{x}$. The Navier-Stokes momentum equations are

$$
\underline{q}_{t}+(\underline{q} \cdot \nabla) \underline{q}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \underline{q}
$$

Non-dimensionalising using

$$
\begin{aligned}
\underline{q} & =U_{\infty} \underline{q}^{\prime} \\
\underline{x} & =L \underline{x}^{\prime} \\
p & =\mu \frac{U_{\infty}}{l} p^{\prime}
\end{aligned}
$$

where U_{∞}, L are a typical velocity and length in the flow, we find that (with $\left.t=\left(L / U_{\infty} t^{\prime}\right)\right)$
(dropping primes)

$$
\begin{array}{r}
\frac{U_{\infty}^{2}}{L}\left(\underline{q_{t}}+(\underline{q} \cdot \nabla) \underline{q}\right)=-\frac{\mu U_{\infty}}{\rho L^{2}} \nabla^{2} \underline{q} \\
\Rightarrow \operatorname{Re}\left(\underline{q}_{t}+(\underline{q} \cdot \nabla) \underline{q}\right)=-\nabla p+\nabla^{2} \underline{q} \quad\left(\operatorname{Re}=L U_{\infty} / \nu\right) .
\end{array}
$$

So for $R e \ll 1$ we get, to lowest order,

$$
\nabla p=\nabla^{2} \underline{q} .
$$

$\Rightarrow \operatorname{curl} \nabla p=\operatorname{curl} \nabla^{2} \underline{q}=\nabla^{2} \operatorname{curl} \underline{q}=0$
Now curl $\underline{q}=\left|\begin{array}{ccc}\underline{i} & \underline{j} & \underline{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ \psi_{x} & -\psi_{y} & 0\end{array}\right|=\left(\begin{array}{c}0 \\ 0 \\ -\psi_{x x}-\psi_{y y}\end{array}\right)$
\Rightarrow for slow flow $\nabla^{4} \psi=0$
This equation contains no time derivatives as all inertia has vanished to lowest order. In a truly unsteady flow the time derivative would manifest itself via the boundary conditions.

Now we must solve $\nabla^{4} \psi=0(r \geq 0,-\alpha \leq \theta \leq \alpha)$.
Suitable B/C's are no slip:-

$$
\psi=\psi_{\theta}=0 \quad \text { on } \theta= \pm \alpha
$$

[also symmetry conditions could be used]
So try $\psi=r^{\lambda}(A \cos \lambda \theta+B \cos (\lambda-2) \theta)$

$$
\begin{aligned}
\nabla^{2} \psi= & \lambda(\lambda-1) r^{\lambda-2}(A \cos \lambda \theta+B \cos (\lambda-2) \theta \\
& +\frac{1}{r} \lambda r^{\lambda-1}(A \cos \lambda \theta+B \cos (\lambda-2) \theta) \\
& +\frac{r^{\lambda}}{r^{2}}\left(-\lambda^{2} A \cos \lambda \theta-(\lambda-2)^{2} B \cos (\lambda-2) \theta\right) \\
= & (\lambda(\lambda-1)+\lambda) r^{\lambda-2}(A \cos \lambda \theta-B \cos (\lambda-2) \theta) \\
& +r^{\lambda-2}\left(-\lambda^{2} A \cos \lambda \theta-(\lambda-2)^{2} B \cos (\lambda-2) \theta\right) \\
= & B\left(\lambda^{2}-(\lambda-2)^{2}\right) \cos (\lambda-2) \theta\left(r^{\lambda-2}\right)
\end{aligned}
$$

$$
\text { so } \begin{aligned}
\nabla^{4} \psi \propto & (\lambda-2)(\lambda-3) r^{\lambda-4} \cos (\lambda-2) \theta+(\lambda-2) r^{\lambda-4} \cos (\lambda-2) \\
& -r^{\lambda-4}(\lambda-2)^{2} \cos (\lambda-2) \theta \\
= & (\lambda-2)(\lambda-3+1-\lambda+2) \\
= & 0
\end{aligned}
$$

Thus

$$
\nabla^{4} \psi=0
$$

B/C's:- $(\psi$ is even, so need only impose at $\theta=+\alpha)$

$$
\begin{aligned}
\psi=0 & \text { at } \quad \theta=\alpha:-\quad 0=A \cos \lambda \alpha+B \cos (\lambda-2) \alpha \\
\psi_{\theta}=0 & \text { at } \quad \theta=\alpha:-\quad 0=A \lambda \sin \lambda \alpha+(\lambda-2) B \sin (\lambda-2) \alpha
\end{aligned}
$$

These homgeneous equations have no non-zero solution unless the determinant of the coefficients is zero.
i.e. need $\left|\begin{array}{cc}\cos \lambda \alpha & \cos (\lambda-2) \alpha \\ \lambda \sin \lambda \alpha & (\lambda-2) \sin (\lambda-2) \alpha\end{array}\right|=0$

$$
\begin{array}{r}
\Rightarrow(\cos \lambda \alpha)(\lambda-2) \sin (\lambda-2)-\cos (\lambda-2) \alpha(\lambda \sin \alpha)=0 \\
\Rightarrow(\lambda-2) \tan (\lambda-2) \alpha=\lambda \tan \lambda \alpha
\end{array}
$$

