Question

Let $A \subseteq \mathbf{R}^{\mathbf{n}}$ and $B \subseteq \mathbf{R}^{\mathbf{m}}$. Let m_n^* denote Lebesgue outer measure in $\mathbf{R}^{\mathbf{n}}$. Show that $m_{n+m}^*(A \times B) = m_n^*(A) \cdot m_n^*(B)$ where $A \times B$ is the cartesian product.

Answer

Let $\bigcup R_i \supseteq A$ and $\bigcup S_j \supseteq B$. Suppose $m^*(A) < \infty$ and $m^*(B) < \infty$ Then $\bigcup R_i \times S_j \supseteq A \times B$ ijChoose $\{R_i\}$ so that $\sum |R_i| \le m^*(A) + \epsilon$ Choose $\{S_i\}$ so that $\sum |S_i| \leq m^*(B) + \epsilon$ Then $\sum |R_i \times S_j| = \sum |R_i| |S_j| = \sum |R_i| \sum |S_j|$ $\leq m^*(A)m^*(B) + \epsilon_1$ Therefore $m^*(A \times B) \leq m^*(A)m^*(B) + \epsilon$ Now cover $(A \times B)$ by $R_i \subseteq \mathbf{R}^{\mathbf{m}+\mathbf{n}}$ Let S_i be the projection of R_i onto \mathbf{R}^n Let T_i be the projection of R_i onto $\mathbf{R}^{\mathbf{m}}$ Then $\bigcup S_i \supseteq A$, and $\bigcup T_i \supseteq B$ Choose R_i so that $\sum |R_i| \leq m^*(A \times B) + \epsilon$ $m^*(A)m^*(B) \le \sum |S_i| \ge |T_j| = \sum |R_i| \le m^*(A \times B) + \epsilon$ Hence the result. Deal with infinite measure cases using σ -finiteness arguments.