Question

Let $A \subseteq \mathbf{R}^{\mathbf{n}}$ and $B \subseteq \mathbf{R}^{\mathbf{m}}$. Let m_{n}^{*} denote Lebesgue outer measure in $\mathbf{R}^{\mathbf{n}}$. Show that $m_{n+m}^{*}(A \times B)=m_{n}^{*}(A) \cdot m_{n}^{*}(B)$ where $A \times B$ is the cartesian product.

Answer

Let $\cup R_{i} \supseteq A$ and $\cup S_{j} \supseteq B$.
Suppose $m^{*}(A)<\infty$ and $m^{*}(B)<\infty$
Then $\bigcup_{i j} R_{i} \times S_{j} \supseteq A \times B$
Choose $\left\{R_{i}\right\}$ so that $\sum\left|R_{i}\right| \leq m^{*}(A)+\epsilon$
Choose $\left\{S_{j}\right\}$ so that $\sum\left|S_{j}\right| \leq m^{*}(B)+\epsilon$
Then $\sum\left|R_{i} \times S_{j}\right|=\sum\left|R_{i}\right|\left|S_{j}\right|=\sum\left|R_{i}\right| \sum\left|S_{j}\right|$
$\leq m^{*}(A) m^{*}(B)+\epsilon_{1}$
Therefore $m^{*}(A \times B) \leq m^{*}(A) m^{*}(B)+\epsilon$
Now cover $(A \times B)$ by $R_{i} \subseteq \mathbf{R}^{\mathbf{m}+\mathbf{n}}$
Let S_{i} be the projection of R_{i} onto $\mathbf{R}^{\mathbf{n}}$
Let T_{i} be the projection of R_{i} onto $\mathbf{R}^{\mathbf{m}}$
Then $\cup S_{i} \supseteq A$, and $\cup T_{i} \supseteq B$
Choose R_{i} so that $\sum\left|R_{i}\right| \leq m^{*}(A \times B)+\epsilon$
$m^{*}(A) m^{*}(B) \leq \sum\left|S_{i}\right| \sum\left|T_{j}\right|=\sum\left|R_{i}\right| \leq m^{*}(A \times B)+\epsilon$
Hence the result. Deal with infinite measure cases using σ-finiteness arguments.

