Question

Solve the following differential equations subject to the given initial conditions:

1.
$$y'' + y' - 2y = 2e^x$$
 $y(0) = 0$ $y'(0) = 1$

2.
$$y'' - 2y' + y = e^x + 4$$
 $y(0) = 1$ $y'(0) = 1$ (*)

3.
$$y'' + 2y' + 5y = 4e^{-x}\cos 2x$$
 $y(0) = 1$ $y'(0) = 0$

Answer

- 1. Auxiliary equation is: $m^2+m-2=0$ giving m=-2,1 Hence the complementary function is: $y_{cf}=Ae^{-2x}+Be^x$ Note that the right hand side of the equation contains a linear combination of the complementary function so try the particular integral: $y_p=axe^{2x}$ Equation becomes: $(2ae^x+axe^x)+(ae^x+axe^x)-2(axe^x)=2e^x$ Hence $3ae^x=2e^x$ so that a=2/3 The general solution is: $y=Ae^{-2x}+Be^x+\frac{2}{3}xe^x$ Imposing y(0)=1 gives A+B=0 Imposing y(0)=1 gives A+B=0 Imposing y(0)=1 gives a=2A+B+2/3=1
- Hence $A = \frac{-1}{9}$ and $B = \frac{1}{9}$ Hence $y = \frac{1}{9} \left(e^x e^{-2x} \right) + \frac{2}{3} x e^x$ 2. Auxiliary equation is: $m^2 - 2m + 1 = 0$ giving m = 1, 1
- 2. Auxiliary equation is: $m^2 2m + 1 = 0$ giving m = 1, 1 Hence the complementary function is: $y_{cf} = e^x(A + Bx)$ Note that the right hand side contains a term, e^x which is in the complementary function and that xe^x is also on the complementary function. Hence try the particular integral: $y_p = ax^2e^x + b$ (the a term allows for the e^x in the right hand side and the b term allows for the constant, 4.) Equation becomes: $\left(2ae^x + 4axe^x + ax^2e^x \right) 2 \left(2axe^x + ax^2e^x \right) + \left(ax^2e^x + b \right) = e^x + 4$ and simplifying gives: $2ae^{-x} + b = e^{-x} + 4$ so that a = 1/2 and b = 4 The general solution is: $y = e^x(A + Bx) + \frac{1}{2}x^2e^x + 4$ Imposing y(0) = 1 gives A + 4 = 1

Imposing
$$y'(0) = 1$$
 gives $A + B = 1$
so that $A = -3$ and $B = 4$.
Giving the solution $y = e^x(4x - 3) + \frac{1}{2}x^2e^x + 4$

3. Auxiliary equation is: $m^2 + 2m + 5 = 0$ giving $m = -1 \pm 2i$ Hence the complementary function is: $y_{cf} = e^{-x}(A\cos(2x) + B\sin(2x))$ Note that the right hand side of the equation contains a linear combination of the complementary function so:

try the particular integral: $y_p = axe^{-x}\sin(2x) + bxe^{-x}\cos(2x)$ Equation becomes:

(note that the particular integral for this last question can also be found by writing the problem in the form

$$y'' + 2y' + 5y = 2\left(e^{(-1+2i)x} + e^{(-1-2i)x}\right)$$

and then seeking a particular integral of the form $y_p = axe^{(-1+2i)x} + bxe^{(-1-2i)x}$

but care must be taken as both a and b here will be complex and to get a real solution we shall require $b=a^*$ (where * means complex conjugate).)