QUESTION A good model for the variation, from item to item, of a quality characteristic of a certain manufactured product is a random variable X with probability density function $f(x)=\frac{2 x}{\lambda^{2}}, 0 \leq x \leq \lambda$. Each of the manufactured items is tested and items for which $X>1$, where $0<1<\lambda$, are passed and the rest are rejected. The cost of a rejected item is $c=a \lambda+b$ and the profit on a passed item is $C-c$. The parameter λ can be adjusted to any desired value. Find λ such that the expected profit is maximised.

ANSWER $f(x)=\frac{2 x}{\lambda^{2}}, 0 \leq x \leq \lambda$

$$
\left.\begin{array}{rl}
\text { Profit } & =(C-c) \text { if } X>L \\
& =-c \text { if } X \leq L \\
E(\text { Profit }) & =(C-c) P(X>L)-c P(X \leq L) \\
& =C P(X>L)-c
\end{array}\right] \begin{aligned}
P(X>L)=\int_{L}^{\lambda} \frac{2 x}{\lambda^{2}} d x=\left[\frac{x^{2}}{\lambda^{2}}\right]_{L}^{\lambda}=1-\frac{L^{2}}{\lambda^{2}} \\
E(\text { profit })=C\left(1-\frac{L^{2}}{\lambda^{2}}\right)-(a \lambda+b) \\
\frac{d E \text { (profit) }}{d \lambda}=\frac{2 c L^{2}}{\lambda^{3}}-a=0 \text { when } \lambda^{3}=\frac{2 C L^{2}}{a} \\
\quad \lambda=\sqrt[3]{\frac{2 C L^{2}}{a}}
\end{aligned}
$$

Check that $\frac{d^{2} E(\text { profit })}{d \lambda^{2}}<0$ to confirm that this is the maximum.

