QUESTION The time to failure,t in hours, of components follows the density function $f(t)=\alpha^{2} t e-\alpha t, t>0$.
(a) What is the probability that a component which has survived for two hours will fail in the next hour?
(b) The cost of producing a component is $2 \mu^{2}$ units where μ is the mean time for failure. An income of $48 t$ units per component is received for the time the component is working properly. Show that the maximum expected profit per component is 288 units corresponding to $\alpha=\frac{1}{6}$.
ANSWER $f(t)=\alpha^{2} t e^{-\alpha t}, t>o$

$$
\begin{aligned}
F(t) & =\int_{0}^{t} \alpha^{2} s e^{-\alpha s} d s \\
& =\left[-\alpha s e^{-\alpha} s\right]_{o}^{t}+\int_{0}^{t} \alpha e^{-\alpha s} d s \\
& =-\alpha t e^{-\alpha t}-\left[e^{-\alpha s}\right]_{0}^{t} \\
& =1-e^{-\alpha t}(1+\alpha t)
\end{aligned}
$$

(a)

$$
\begin{aligned}
\text { Require } P(2, T, 3 \mid t>2) & =\frac{P(2<T<3 \text { and } T>2}{P(T>2)} \\
& =\frac{P(2<T<3)}{P(T>2)}=\frac{F(3)-F(2)}{1-F(2)} \\
& =\frac{1-e^{-3 \alpha}(1+3 \alpha)-\left(1-e^{-2 \alpha}(1+2 \alpha)\right)}{e^{-2 \alpha}(1+2 \alpha)} \\
& =e^{-2 \alpha}(1+2 \alpha)-e^{-3 \alpha}(1+3 \alpha) e^{-2 \alpha}(1+2 \alpha) \\
& =1+\frac{e^{-\alpha}(1+3 \alpha)}{1+2 \alpha}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mu & =\int_{0}^{\infty} \alpha^{2} t^{2} e^{\alpha t} d t \\
& =\left[-\alpha e^{-\alpha t} t^{2}\right]_{0}^{\infty}+\int_{0}^{\infty} 2 t \alpha e^{-\alpha t} d t \\
& =0+\frac{2}{\alpha} \int_{0}^{\infty} \alpha^{2} t e^{-\alpha t} d t \\
& =\frac{2}{\alpha} \quad\left(\text { since } \int f(t) d t=1\right)
\end{aligned}
$$

Profit $=48 T-2 \mu^{2}$
$\mathrm{E}($ Profit $)=48 E(T)-\mu^{2}=48 \mu-2 \mu^{2}$
$\frac{d E(\text { Profit })}{d \mu}=48-4 \mu=0$ when $\mu=12$
$\frac{d^{2} E(\text { Profit })}{d \mu^{2}}=-4$ therefore profit is maximum when $\mu=12$. Hence $\frac{2}{\alpha}=12$ therefore $\alpha=\frac{1}{6}$

