QUESTION A man travels to work by train and bus. His train is due to arrive at 08.45 and the bus he hopes to catch is due at 08.48 . The time of arrival of the train has a normal distribution with mean 08.44 and standard deviation 2 mins ; the departure time of the bus is independently normally distributed with standard deviation 1 minute. Calculate the probabilities that:
(i) the train is late,
(ii) the bus departs before the train arrives,
(iii) in a period of 5 days there are at least 3 days on which the bus departs before the train arrives.

## ANSWER

(i) The train is late if it arrives after 08.45 , i.e. more than one minute after the mean. $P($ Late $)=1-\Phi\left(\frac{1}{2}\right)=0.3085$
(ii) $T \sim N\left(08.44,2^{2}\right), \quad B \sim N\left(08.48,1^{2}\right)$
$P(B<T)=P(B-T<0)$
$B-T \sim N(4,5)$ therefore $P(B<T)=\Phi\left(\frac{0-4}{\sqrt{5}}\right)=1-\Phi(1.79)=.0365$
(iii) Number of days on which the bus departs before the train arrives $B(5,0.0365)$
$\mathrm{P}($ Number of days $\geq 3)=\binom{5}{3}(0.0365)^{3}(0.9635)^{2}+\binom{5}{4}(0.0365)^{4}(0.9635)+$ $(0.0365)^{5}=0.0005$

