Question

- (a) Define carefully what is meant by a *conformal map*, w = f(z)
- (b) Let z = x + iy, w = u + iv and consider the Joukowski transformation

$$w = z + \frac{1}{z}.$$

Show that this transformation maps the region Im(z) > 0, |z| > 1 to the region Im 0 (i.e., the shaded portions on the diagram below). PICTURE

(c) By considering the imaginary part of the complex function

$$\alpha \log(w+2) + \beta \log(w-2) + \gamma,$$

where α , β , γ are real constants to be found, write down a harmonic function ϕ which satisfies the boundary conditions

$$\phi(u, 0^+) = \begin{cases} 0, |u| > 2\\ 1, |u| < 2 \end{cases}$$

(Hint: take $-\pi < \arg(w+2) \le \pi$ and $-\pi < \arg(w-2) \le \pi$.)

(d) Hence solve the equation
 \scale F(x, y) = 0 in the region y ≥ 0, |x² + y²| ≥
 1, subject to the boundary conditions, leaving your answer in terms of
 z = x + iy

$$F(x,y) = \begin{cases} 0, & y = 0, & |x| > 1\\ 1, & y = 0, & |x| < 1 \end{cases}$$

Answer

- (a) A conformal map f on ???? is one which preserves angles (and also the sense of the angle). A differentiable function gives conformal transformations, provided $f'(z) \neq 0$.
- (b) Consider Joukowski:

$$w = f(z) = z + \frac{1}{z}$$

Take |z| = 1, Im(z) > 0 with $z = e^{i\theta}$, $0 < \theta < \pi$ $w = e^{i\theta} + e^{-i\theta} = 2\cos\theta$; $0 < \theta < \pi$ so $ABC \longrightarrow A'B'C'$ since $-2 < 2\cos\theta < 2$ Take Im(z) = 0, Re(z) = x < -1Therefore $w = x + \frac{1}{x}$ with runs between $w = -1 - \frac{1}{1} = -2$ and $w = -\infty + \frac{1}{-\infty} = -\infty$ so $-\infty cz \to -\infty c'$ Likewise for Im(z) = 0, Re(z) = x > 1

$$A\infty \to A'\infty$$

Pick point in Im(z) > 0, |z| > 1 and see where it goes, e.g., $z = 2i \Rightarrow = 2i + \frac{1}{2i} = \left(2 - \frac{1}{2}\right)i = \frac{3}{2}i$ which has Im(w) > 0.

Thus transformation is as stated in question.

(c) Imaginary part of

 $\alpha \log(w+2) + \beta \log(w-2) + \gamma, \ \alpha, \ \beta \ \gamma \text{ real}$

$$\Phi(w) = \alpha \log(w+2) + \beta \log(w-2) + \gamma$$

is analytic, except at $w = \pm 2$.

Thus $Im(\Phi(w))$ must be harmonic, except at those points and hence satisfies Laplace's equation in (u, v).

To satisfy

$$\phi(u, 0^+) = \left\{ \begin{array}{cc} 0, & |u| > 2\\ 1, & |v| < 2 \end{array} \right\}$$

we have on

(A) $Re(u) > 0, |u| > 2; \theta_1 = 0, \theta_2 = 0$

r

Therefore
$$0 = \alpha \cdot 0 + \beta \cdot 0 + \gamma \Rightarrow \gamma = 0$$

(B) $Re(u) > 0, |u| < 2; \theta_1 = 0, \theta_2 = \pi$

Therefore $1 = \alpha \cdot 0 + \beta \cdot \pi + 0 \Rightarrow \underline{\beta} = \frac{1}{\pi}$

(C) $Re(u) > 0, |u| < 2; \theta_1 = 0, \theta_2 = 0$

So same as above
$$\beta = \frac{1}{\pi}$$

(D) $Re(u) > 0, |u| > 2; \theta_1 = \pi, \theta_2 = \pi$

Therefore
$$0 = \alpha \cdot \pi + \beta \cdot \pi \Rightarrow \frac{\alpha = -\frac{1}{\pi}}{\pi}$$

Therefore

$$\Phi(w) = \frac{1}{\pi} \log(w-2) - \frac{1}{\pi} \log(w+2)$$

$$\underline{\phi = \frac{\theta_2}{\pi} - \frac{\theta_1}{\pi} = \frac{1}{\pi}\arctan\left(\frac{v}{u-2}\right) - \frac{1}{\pi}\arctan\left(\frac{v}{u+2}\right)}$$

(d) Avoiding z = 0 we have from theorem in notes that image of harmonic ϕ in w = f(z) is also harmonic.

So given that Joukowski transform

$$w = z + \frac{1}{z}$$

we have the boundary conditions of F(x, y) mapping onto the boundary conditions of $\phi(x, y)$.

Hence we have that

 $Im(\Phi(w(z)))$ satisfies $\nabla^2 F(x,y)=0$ in given region of z with boundary conditions.

Therefore

$$Im[\Phi(w(z))] = Im\left[\frac{1}{\pi}\log\left(z + \frac{1}{z} - 2\right) - \frac{1}{i}\log\left(z + \frac{1}{z} + 2\right)\right]$$

= $Im\left[\frac{1}{\pi}\log\left(x + iy + \frac{1}{x + iy} - 2\right) - \frac{1}{\pi}\left(x + iy + \frac{1}{x + iy} + 2\right)\right]$