Question

(a) Define carefully what is meant by a conformal map, $w=f(z)$
(b) Let $z=x+i y, w=u+i v$ and consider the Joukowski transformation

$$
w=z+\frac{1}{z} .
$$

Show that this transformation maps the region $\operatorname{Im}(z)>0,|z|>1$ to the region $\operatorname{Im} 0$ (i.e., the shaded portions on the diagram below).
PICTURE

(c) By considering the imaginary part of the complex function

$$
\alpha \log (w+2)+\beta \log (w-2)+\gamma
$$

where α, β, γ are real constants to be found, write down a harmonic function ϕ which satisfies the boundary conditions

$$
\phi\left(u, 0^{+}\right)=\left\{\begin{array}{l}
0,|u|>2 \\
1,|u|<2
\end{array}\right.
$$

(Hint: take $-\pi<\arg (w+2) \leq \pi$ and $-\pi<\arg (w-2) \leq \pi$.)
(d) Hence solve the equation $\nabla^{2} F(x, y)=0$ in the region $y \geq 0,\left|x^{2}+y^{2}\right| \geq$ 1 , subject to the boundary conditions, leaving your answer in terms of $z=x+i y$

$$
F(x, y)= \begin{cases}0, & y=0, \\ 1, & y=0,>1 \\ 1, & |x|<1\end{cases}
$$

Answer

(a) A conformal map f on ???? is one which preserves angles (and also the sense of the angle). A differentiable function gives conformal transformations, provided $f^{\prime}(z) \neq 0$.
(b) Consider Joukowski:

$$
w=f(z)=z+\frac{1}{z}
$$

Take $|z|=1, \operatorname{Im}(z)>0$ with $z=e^{i \theta}, 0<\theta<\pi$ $w=e^{i \theta}+e^{-i \theta}=2 \cos \theta ; 0<\theta<\pi$
so $A B C \longrightarrow A^{\prime} B^{\prime} C^{\prime}$
since $-2<2 \cos \theta<2$
Take $\operatorname{Im}(z)=0, \operatorname{Re}(z)=x<-1$
Therefore $w=x+\frac{1}{x}$ with runs between $w=-1-\frac{1}{1}=-2$ and $w=-\infty+\frac{1}{-\infty}=-\infty$
so $-\infty c z \rightarrow-\infty c^{\prime}$

Likewise for $\operatorname{Im}(z)=0, \operatorname{Re}(z)=x>1$

$$
A \infty \rightarrow A^{\prime} \infty
$$

Pick point in $\operatorname{Im}(z)>0,|z|>1$ and see where it goes, e.g., $z=2 i \Rightarrow=2 i+\frac{1}{2 i}=\left(2-\frac{1}{2}\right) i=\frac{3}{2} i$
which has $\operatorname{Im}(w)>0$.
Thus transformation is as stated in question.
(c) Imaginary part of

$$
\alpha \log (w+2)+\beta \log (w-2)+\gamma, \alpha, \beta \gamma \text { real }
$$

is $\alpha \theta_{1}+\beta \theta_{2}+\gamma$
where θ_{1} and θ_{2} are defined by

$$
\Phi(w)=\alpha \log (w+2)+\beta \log (w-2)+\gamma
$$

is analytic, except at $w= \pm 2$.
Thus $\operatorname{Im}(\Phi(w))$ must be harmonic, except at those points and hence satisfies Laplace's equation in (u, v).
To satisfy

$$
\phi\left(u, 0^{+}\right)=\left\{\begin{array}{ll}
0, & |u|>2 \\
1, & |v|<2
\end{array}\right\}
$$

we have on
(A) $\operatorname{Re}(u)>0,|u|>2 ; \theta_{1}=0, \theta_{2}=0$

$$
\text { Therefore } 0=\alpha \cdot 0+\beta \cdot 0+\gamma \Rightarrow \underline{\gamma=0}
$$

(B) $\operatorname{Re}(u)>0,|u|<2 ; \theta_{1}=0, \theta_{2}=\pi$

$$
\text { Therefore } 1=\alpha \cdot 0+\beta \cdot \pi+0 \Rightarrow \beta=\frac{1}{\pi}
$$

(C) $\operatorname{Re}(u)>0,|u|<2 ; \theta_{1}=0, \theta_{2}=0$

$$
\text { So same as above } \beta=\frac{1}{\pi}
$$

(D) $\operatorname{Re}(u)>0,|u|>2 ; \theta_{1}=\pi, \theta_{2}=\pi$

$$
\text { Therefore } 0=\alpha \cdot \pi+\beta \cdot \pi \Rightarrow \alpha=-\frac{1}{\pi}
$$

Therefore

$$
\begin{gathered}
\Phi(w)=\frac{1}{\pi} \log (w-2)-\frac{1}{\pi} \log (w+2) \\
\phi=\frac{\theta_{2}}{\pi}-\frac{\theta_{1}}{\pi}=\frac{1}{\pi} \arctan \left(\frac{v}{u-2}\right)-\frac{1}{\pi} \arctan \left(\frac{v}{u+2}\right) \\
\hline
\end{gathered}
$$

(d) Avoiding $z=0$ we have from theorem in notes that image of harmonic ϕ in $w=f(z)$ is also harmonic.

So given that Joukowski transform

$$
w=z+\frac{1}{z}
$$

we have the boundary conditions of $F(x, y)$ mapping onto the boundary conditions of $\phi(x, y)$.

Hence we have that
$\operatorname{Im}(\Phi(w(z)))$ satisfies $\nabla^{2} F(x, y)=0$ in given region of z with boundary conditions.

Therefore

$$
\begin{aligned}
& \operatorname{Im}[\Phi(w(z))]=\operatorname{Im}\left[\frac{1}{\pi} \log \left(z+\frac{1}{z}-2\right)-\frac{1}{i} \log \left(z+\frac{1}{z}+2\right)\right] \\
& =\operatorname{Im}\left[\frac{1}{\pi} \log \left(x+i y+\frac{1}{x+i y}-2\right)-\frac{1}{\pi}\left(x+i y+\frac{1}{x+i y}+2\right)\right]
\end{aligned}
$$

