Question

(a) If the Laplace transform of a suitable function $f(t)$ is defined to be

$$
\bar{f}(p)=\int_{0}^{\infty} d t f(t) \exp (-p t), \text { Re } p>0
$$

state carefully the inverse transform in terms of a contour integral.
(b) (i) Using this integral representation, defining $-\pi<\arg p \leq \pi$, and suitably closing the contour, show that the inverse Laplace transform of $\bar{f}_{1}(p)=\log p$ is $f_{1}(t)=-\frac{1}{t}$. (You may assume without proof that all integrals over infinite or vanishing arcs give a zero contribution.)
(ii) Hence show that the inverse Laplace transform of $\bar{f}_{2}(p)=\log (p+1)$ is $f_{2}(t)=-\frac{e^{-t}}{t}$.
(iii) Using parts (i) and (ii), show that the inverse Laplace transform of $\bar{f}_{3}=\log \left[\frac{(p+1)}{p}\right]$ is $f_{3}(t)=\frac{\left(1-e^{-t}\right)}{t}$.
(c) Show that the following equation

$$
\begin{gathered}
t \frac{d^{2} f}{d t^{2}}+2 \frac{d f}{d t}+t f=1-2 e^{-t} \\
f(0)=1, f^{\prime}(0)=-\frac{1}{2}
\end{gathered}
$$

can be Laplace-transformed to give

$$
\frac{d \bar{f}}{d p}=-\frac{1}{p(p+1)}
$$

Consequently, using the results of part b, solve for $f(t)$.

Answer
(a) $\hat{f}(p)=\int_{0}^{\infty} d t f(t) e^{-p t}, \operatorname{Re}(p)>0$
$\Rightarrow f(t)=\frac{1}{2 \pi i} \int_{C} d p e^{p t} \hat{f}(p), t>0$
Bromwich Contour: C:
(p)

All singularities to left of c.
(b) (i) Want $f_{1}(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d p \log p e^{p t}$
p has branch point at $p=0$, define branch on $-\pi<\arg p \leq \pi$. Complete to left.
PICTURE

Close p to left and form keyhole contour.
Integrals (2), (4) and (6) vanish by hint.

Therefore

$$
\begin{aligned}
(1)= & \frac{1}{2 \pi i} \int_{\infty}^{0} d x e^{i \pi} \log \left(x e^{i \pi} e^{-x t}\right. \\
& (3): p=x e^{i \pi} \\
& +\frac{1}{2 \pi i} \int_{0}^{\infty} d x e^{i \pi} \log \left(x e^{-i \pi}\right) e^{-x t} \\
& (5): p=x e^{-i \pi} \\
= & +\frac{1}{2 \pi i} \int_{0}^{\infty} d x(\log x+i \pi) e^{-x t} \\
& -\frac{1}{2 \pi i} \int_{0}^{\infty} d x(\log x-i \pi) e^{-x t} \\
= & \frac{2 \pi i}{2 \pi i} \int_{0}^{\infty} d x e^{-x t} \\
= & -\frac{1}{t}
\end{aligned}
$$

Therefore $\hat{f}_{1}(p)=\log p \Leftrightarrow f_{1}(t)=-\frac{1}{t}$.
(ii) Use Laplace's transform property that

$$
\begin{aligned}
& L\left[e^{a t} f(t)\right]=\hat{f}(p) \\
& \Rightarrow L\left[e^{-t} f(t)\right]=\hat{f}(p+1)
\end{aligned}
$$

$$
\text { Therefore if } \begin{aligned}
\hat{\mathrm{f}}(\mathrm{p}+1) & =\hat{\mathrm{f}}_{2}(\mathrm{p})
\end{aligned}=\log (p+1) .
$$

(iii) Laplace transforms are linear, so

$$
\begin{aligned}
& L\left[f_{1}(t)+\right.\left.f_{2}(t)\right]=L\left[f_{2}(t)\right] \\
& \Leftrightarrow L\left[\frac{1-e^{-t}}{t}\right]=L\left[\frac{1}{t}\right]+L\left[-\frac{e^{-t}}{t}\right] \\
&=-L\left[\frac{1}{t}\right]+L\left[-\frac{e^{-t}}{t}\right] \\
&=\log (p+1)-\log p \\
&=\log \left(\frac{p+1}{p}\right) \\
& \Rightarrow \\
& \hline L^{-1}\left[\log \left(\frac{p+1}{p}\right)\right]=\frac{1-e^{-t}}{t}
\end{aligned}
$$

(c)

$$
\begin{aligned}
L\left[t f^{\prime \prime}\right] & =-\partial p L\left[f^{\prime \prime}\right] \\
& =-\frac{p l}{\partial p}[p^{2} \bar{f}(p)-p \underbrace{f\left(0_{+}\right)}+\underbrace{f^{\prime}\left(0_{+}\right)}] \\
& =-\frac{\partial}{\partial p}\left[p^{2} \bar{f}-p-\frac{1}{2}\right] \\
& =-2 p \bar{f}-p^{2} \bar{f}^{\prime}+1 \\
L\left[2 f^{\prime}\right] & =2[p \bar{f}-\underbrace{f\left(0_{+}\right)}_{=+1}] \\
& =2 p \bar{f}-2 \\
L[t f] & =-\partial_{p} \bar{f}(p)=-\bar{f}^{\prime}(p) \\
L[1] & =\int_{0}^{\infty} d t e^{-p t}=\frac{1}{p} \\
L\left[-2 e^{-t}\right] & =-2 \int_{0}^{\infty} d t e^{-(p+1) t}=\frac{-2}{(p+1)}
\end{aligned}
$$

Therefore L [equation] is

$$
-2 p \bar{f}-p^{2} \bar{f}^{\prime}+1+2 p \bar{f}-2-f^{\prime}=\frac{1}{p}-\frac{2}{p+1}
$$

Therefore

$$
\begin{aligned}
\begin{aligned}
&-\left(p^{2}+1\right) \bar{f}^{\prime}=1+\frac{1}{p}-\frac{2}{p+1} \\
&=\frac{p(p+1)+(p+1)-2 p}{p(p+1)} \\
&=\frac{p^{2}+p+p+1-2 p}{p(p+1)} \\
& \text { Therefore }-\left(\mathrm{p}^{2}+1\right) \overline{\mathrm{f}}^{\prime}=\frac{\left(p^{2}+1\right)}{p(p+1)} \\
& \text { Therefore } \overline{\mathrm{f}}^{\prime}=-\frac{1}{p(p+1)} \text { as required } \\
& \Rightarrow \bar{f}=-\log p+\log (p+1)+\log c \quad c=\text { const } \\
& \bar{f}^{\prime}=-\frac{1}{p+\frac{1}{p+1}} \\
& \bar{f}=\log \left\{\left[\frac{(p+1)}{p}\right]\right. \\
&c\}
\end{aligned} \\
\Rightarrow f(t)=D \frac{\left(1-e^{-t}\right)}{t}
\end{aligned}
$$

By previous bits of question and standard results. $D=$ const But if $f(0)=1 \Rightarrow D=1$ since

$$
f(t)=\left(\frac{1-e^{-t}}{t}\right)
$$

and $\lim _{t \rightarrow 0} f(t)=\lim _{t \rightarrow 0}+\frac{e^{-t}}{1}=1$ by L'Hopital
Hence

$$
f(t)=\frac{1-e^{-t}}{t}
$$

