QUESTION

Using you answers to questions 1 and 2, find all solution of the following equations:-
(i) $x^{5} \equiv 4 \bmod 27$
(ii) $x^{3} \equiv 9 \bmod 187$
(iii) $x^{4} \equiv 5 \bmod 18$.

ANSWER
(i) By q.2, a primitive root mod 27 can be chosen, We choose 2 here. (5 would do just as well.) Now 4 can be written as $2^{2} \bmod 27$ (or 5^{4} if you are using 5 as your primitive root). We may then write $x \equiv 2^{k} \bmod 27$ (5^{k} in the other case). The equation then reads $2^{5 k} \equiv 2^{2} \bmod 27$, i.e. $2^{5 k-2} \equiv 1 \bmod 27$. As the order of $2 \bmod 27$ is $\phi(27)=18$, we obtain $5 k-2 \equiv 0 \bmod 18$, or $5 k \equiv 2 \bmod 18$. (If you used 5 as your primitive root, you should have $5 k \equiv 4 \bmod 18$ here).
As $\operatorname{gcd}(5,18)=1$, there is a unique root mod 18 to this congruence, which, by using $5 k \equiv 2 \equiv 20 \bmod 18$, we can see is 4 . Thus $k \equiv 4 \bmod 18$, and there is a unique root to $x^{5} \equiv 4 \bmod 27$, namely $2^{4} \equiv 16 \bmod 27$ (Using 5 as a primitive root, we get $k \equiv 8 \bmod 18$ and hence arrive at the same conclusion concerning x.)
(ii) $x^{3} \equiv 9 \bmod 187$. Now $187=11.17$, and as there is no primitive root mod 11.17, we'll begin by solving separately the two congruences $x^{3} \equiv 9$ $\bmod 11$ and $x^{3} \equiv 9 \bmod 17$. From question2, 2 is a primitive root mod 11 , and by calculating powers of 2 we find that $9 \equiv 2^{6} \bmod 11$. We are thus solving $x^{3} \equiv 2^{6} \bmod 11$, so setting $x=2^{k}$ we get $2^{3 k} \equiv 2^{6} \bmod$ 11 , or $2^{3 k-6} \equiv 1 \bmod 11$. It follows that the order of $2 \bmod 11$ (i.e.10) must divide $3 k-6$, and so we get $3 k \equiv 6 \bmod 10$. Since $\operatorname{gcd}(3,10)=1$, this congruence has a unique solution, which we see, on dividing by 3 , is $k \equiv 2 \bmod 10$. Thus the only solution of $x^{3} \equiv 9 \bmod 11$ is $x \equiv 2^{2} \equiv 4$ $\bmod 11$.

From question 1 (iii), 5 is a primitive root mod 17 , so this time we write 9 as a power of $5 \bmod 17$. By trial and error (i.e. by calculating powers of $5 \bmod 17$), we find that $9 \equiv 5^{10} \bmod 17$. (Using $9 \equiv-8$ $\bmod 17$, and the equations $5^{8} \equiv-1 \bmod 16$, and $5^{2} \equiv 8 \bmod 17$ from question 1 achieves this quickly!) Thus setting $x=5^{k}$ our equation now reads $5^{3 k} \equiv 5^{10} \bmod 17$, or $5^{3 k-10} \equiv 1 \bmod 17$. We may now deduce $3 k-10 \equiv 0 \bmod \phi(17)$, and as $\phi(17)=16$, this reads $3 k \equiv 10$ $\bmod 16$.

Since $\operatorname{gcd}(3,16)=1$, this congruence has a unique solution which we may obtain, e.g., by multiplying through by 5 to get $-k \equiv 50 \equiv 2 \bmod 16$, so that $k \equiv-2 \equiv 14 \bmod 16$. Thus (using the calculations in question
1), $x \equiv 5^{14} \equiv 5^{8} .5^{4} .5^{2} \equiv-1.13 .8 \equiv-1 .-1.8 \equiv 32 \equiv 15 \bmod 17$. Thus the unique solution of $x^{3} \equiv 9 \bmod 17$ is $x \equiv 15 \bmod 17$.

If c is a simultaneous solution of $x \equiv 4 \bmod 11$ and $x \equiv 15 \bmod 17$, then $c^{3} \equiv 9 \bmod 11$ and $c^{3} \equiv 9 \bmod 17$, so that $c^{3} \equiv 9 \bmod 187$. Moreover, any root of $x^{3} \equiv 9 \bmod 187$ satisfies both $x^{3} \equiv 9 \bmod 11$ and $x^{3} \equiv 9 \bmod 17$, and so $x \equiv 4 \bmod 11$ and $x \equiv 15 \bmod 17$. By the Chinese Remainder Theorem the two congruences $x \equiv 4 \bmod 11$ and $x \equiv 15 \bmod 177$ have a unique simultaneous solution $\bmod 187$, and so the equation $x^{3} \equiv 9 \bmod 187$ has a unique solution. If we note that $4 \equiv 15 \bmod 11$, we see that 15 satisfies both congruences, so it is the simultaneous solution we seek. Hence the unique solution of $x^{3} \equiv 9$ $\bmod 187$ is $x \equiv 15 \bmod 187$.
(iii) By question 2, 5 is a primitive element $\bmod 18$, and $\phi(18)=6$. Setting $x \equiv 5^{k} \bmod 18$, we need to solve $5^{4 k} \equiv 5 \bmod 18$, i.e. $5^{4 k-1} \equiv 1 \bmod 18$. This gives $4 k \equiv 1 \bmod 6$, but as $\operatorname{gcd}(4,6)=2$, which does not divide 1 , this congruence has no solutions. Thus $x^{4} \equiv 5 \bmod 18$ has no solutions.

