QUESTION

Let $n = q_1 q_2 \dots q_k$ where the q_i are distinct primes and k > 1. Show that if n is a Carmichael number then $q_i - 1|n - 1$ for each i. (This is the converse of the result you proved in example sheet 4, no. 5). Hence show that there is no Carmichael number of the form 3.5.q, where q is any prime > 5. ANSWER

Suppose n is a Carmichael number. The, for any b satisfying gcd(b, n) = 1, we have $b^{n-1} \equiv 1 \mod n$, Now q_i is prime, so we can find a primitive element g_i say mod q_i . The q_i are distinct, so the Chinese Remainder Theorem allows us to find a unique solution mod n to the simultaneous congruences $x \equiv g_i$ mod q_i for $1 \le i \le n$. Let b be this unique solution. The gcd(b, n) = 1 since $gcd(b, q_i) = 1$ for each i. Thus $b^{n-1} \equiv 1 \mod n$, and so $b^{n-1} \equiv 1 \mod q_i$ for each i. But $b \equiv g_i \mod q_i$, and g_i has order $q_i - 1 \mod q_i$ as g_i is a primitive element mod q_i . Thus $q_i - 1|n - 1$, and this is true for each i, as required. Now suppose n = 3.5.q is a Carmichael number, where q is a prime > 5, By

the above, n is divisible by 2,4 and q-1. Set q-1 = t. Then n = 15(t+1), so n-1 = 15t + 14. Since t|n-1 we have t|14. Thus t=1,2,7 or 14, which makes q = t + 1 equal to 2,3,8 or 25, none of which is a prime > 5. Thus no such Carmichael number exists.