QUESTION

Let $n=q_{1} q_{2} \ldots q_{k}$ where the q_{i} are distinct primes and $k>1$. Show that if n is a Carmichael number then $q_{i}-1 \mid n-1$ for each i. (This is the converse of the result you proved in example sheet 4, no. 5). Hence show that there is no Carmichael number of the form 3.5.q, where q is any prime >5. ANSWER
Suppose n is a Carmichael number. The, for any b satisfying $\operatorname{gcd}(b, n)=1$, we have $b^{n-1} \equiv 1 \bmod n$, Now q_{i} is prime, so we can find a primitive element g_{i} say $\bmod q_{i}$. The q_{i} are distinct, so the Chinese Remainder Theorem allows us to find a unique solution mod n to the simultaneous congruences $x \equiv g_{i}$ $\bmod q_{i}$ for $1 \leq i \leq n$. Let b be this unique solution. The $\operatorname{gcd}(b, n)=1$ since $\operatorname{gcd}\left(b, q_{i}\right)=1$ for each i. Thus $b^{n-1} \equiv 1 \bmod n$, and so $b^{n-1} \equiv 1 \bmod q_{i}$ for each i. But $b \equiv g_{i} \bmod q_{i}$, and g_{i} has order $q_{i}-1 \bmod q_{i}$ as g_{i} is a primitive element $\bmod q_{i}$. Thus $q_{i}-1 \mid n-1$, and this is true for each i, as required. Now suppose $n=3.5 . q$ is a Carmichael number, where q is a prime >5, By the above, n is divisible by 2,4 and $q-1$. Set $q-1=t$. Then $n=15(t+1)$, so $n-1=15 t+14$. Since $t \mid n-1$ we have $t \mid 14$. Thus $t=1,2,7$ or 14 , which makes $q=t+1$ equal to $2,3,8$ or 25 , none of which is a prime >5. Thus no such Carmichael number exists.

