Question

Suppose that f is continuous and that the sequence $c, f(c), f(f(c)), f(f(f(c))), \ldots$ converges to a. Prove that $f(a)=a$.
Answer
first, for the sake of notational clarity, define the n-fold composition of f with itself by $f^{\circ n}$, so that $f^{\circ n}=f \circ f^{\circ(n-1)}$. The hypothesis can then be restated as saying that the sequence $\left\{f^{\circ n}(c)\right\}$ converges to a. Now, apply f to both sides. Since f is continuous, the sequence $\left\{f\left(f^{\circ n}(c)\right)\right\}$ converges to $f(a)$, by the note below. However, since $f\left(f^{\circ n}(c)\right)=f \circ f^{\circ n}(c)=f^{\circ(n+1)}(c)$, the sequence $\left\{f\left(f^{\circ n}(c)\right)\right\}$ is the same as the sequence $\left\{f^{\circ n}(c)\right\}$ with the first term removed, and so $\left\{f\left(f^{\circ n}(c)\right)\right\}$ converges to a as well. Hence, since $\left\{f\left(f^{\circ n}(c)\right)\right\}$ converges to both a and $f(a)$, we have that $a=f(a)$.
Note:
Suppose that f is continuous and that the sequence $\left\{a_{n}\right\}$ converges to a. Then, the sequence $\left\{f\left(a_{n}\right)\right\}$ converges to $f(a)$.

