Question
Prove, if f is continuous and if lim, . (f(x + 1) — f(x)) = 0, that
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First, since lim, o (f(z+1)— f(x)) = 0, for any € > 0, there exists z( (which
we can take to be positive) so that | f(z + 1) — f(z)| < 3& for z > zo. Now,
using the maximum value property (see note below), there exists a maximum
value M of |f(z)| on the interval [zq,zo + 1].

The first claim is that for any k > 0, we have that | f(z)| < ke + M for z in
the interval [z + k,zo + k + 1]. To see this, let K be the maximum value of
|f(z)] on [z + k,xo + k + 1], occurring at y. Then, zo+k <y < xo+k+ 1,
and so rg < y—k < zo+ 1. We now engage in some algebraic manipulation:
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In particular, this tells us that
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for all y in the interval [xq + k, zo + k + 1].

Now, choose x1 > xg so that Z—Af < %5. Then, for all y > z1, we have that
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for all y > x1. In particular, we have that the definition of lim, . % =0

is satisfied, as desired.

Note:

Maximum value property for continuous functions: Let f be a func-
tion that is continuous on the closed interval [a,b]. Then f achieves its
maximum on [a, b|; that is, there exists some z in [a, b] so that f(zq) > f(x)
for all z € [a, b].



