Question

The **minimum value property** states that, if f is continuous on [a, b], then f achieves its minimum on [a, b]; that is, there exists some y_0 in [a, b] so that $f(y_0) \leq f(x)$ for all $x \in [a, b]$. Prove that a continuous function $f : [a, b] \to \mathbf{R}$ satisfies the minimum value property if it satisfies the maximum value property.

Answer

Since f is continuous on [a,b], so is g(x)=-f(x). Since g is continuous on the closed interval [a,b], the maximum value property applied to g yields that there exists some x_0 in [a,b] so that $g(x_0) \geq g(x)$ for all x in [a,b]. Hence, $-f(x_0) \geq -f(x)$ for all x in [a,b], and so $f(x_0) \leq f(x)$ for all x in [a,b]. That is, f satisfies the minimum value property.