Question

Let T be a triangle with angles α , β , and $\frac{\pi}{2}$. Let a be the hyperbolic length of the side of T opposite the vertex with angle α . Prove that $\cosh(a)\sin(\beta) = \cos(\alpha)$.

Answer

<u>use lcII</u>:

$$\cos(\alpha) = -\cos(\beta)\cos(\frac{\pi}{2}) + \sin(\beta)\sin(\frac{\pi}{2})\cosh(a)$$
$$= \sin(\beta)\cosh(a)$$

as desired.