Question

Let T be a triangle with angles α, β, and $\frac{\pi}{2}$. Let a be the hyperbolic length of the side of T opposite the vertex with angle α. Prove that $\cosh (a) \sin (\beta)=$ $\cos (\alpha)$.

Answer

use lcII:

$$
\begin{aligned}
\cos (\alpha) & =-\cos (\beta) \cos \left(\frac{\pi}{2}\right)+\sin (\beta) \sin \left(\frac{\pi}{2}\right) \cosh (a) \\
& =\sin (\beta) \cosh (a)
\end{aligned}
$$

as desired.

