
Question

Show that a triangle T in H is an equilateral triangle (that is, all sides have
the same length) if and only if its angles are all equal.

Now, let α be the angle at a vertex of T and let a be the hyperbolic length
of a side of T . Show that 2 cosh( 1
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by lcI: all angles are equal and have cos(α) =
cosh2(a)− cosh(a)

sinh2(a)
(and the

fact that an angle in the range [0, π] is completely determined by its cosine)
(the converse, that equal angles imply equal side lengths follows immediately
from lcII, with

cosh(a) =
cos(α)− cos2(α)

sin2(α)
)

The bisector of the angles intersects the opposite side in a right angle by a
geometric argument, namely the triangle is taken to itself by reflection in the
bisecting line. The same argument shows that the bisecting line intersects
the opposite side in its midpoint.
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(since sin(α) = 2 sin( 1
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and so 2 cosh(1
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a) sin(1

2
α) = 1 as desired.
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