Question

Let T be a triangle in **H** with vertices v_a , v_b , and v_c . Show that the ray from v_a bisecting the angle at v_a contains the midpoint of the hyperbolic line segment ℓ joining v_b and v_c if and only if the angles at v_b and v_c are equal.

Answer

Suppose $\beta = \gamma$. Then by lcII, using side of length d implies that $\phi = \mu$. Since $\beta = \gamma$ and $\phi = \mu$, applying lcII to both subtriangle yields that

$$\cosh(a') = \cosh(a'') \\ = \frac{\cos(\theta) + \cos(\gamma)\cos(\mu)}{\sin(\gamma)\sin(\mu)}$$

and so a' = a''. Suppose now that a' = a''. Then, using ls, we see that $\frac{\sinh(a')}{\sin(\theta)} = \frac{\sinh(d)}{\sin(\beta)} = \frac{\sinh(d)}{\sin(\gamma)} = \frac{\sinh(a'')}{\sin(\theta)}$ and so $\beta = \gamma$, as desired.