Question

Let T be a triangle in \mathbf{H} with vertices v_{a}, v_{b}, and v_{c}. Show that the ray from v_{a} bisecting the angle at v_{a} contains the midpoint of the hyperbolic line segment ℓ joining v_{b} and v_{c} if and only if the angles at v_{b} and v_{c} are equal.

Answer

Suppose $\beta=\gamma$. Then by lcII, using side of length d implies that $\phi=\mu$. Since $\beta=\gamma$ and $\phi=\mu$, applying lcII to both subtriangle yields that

$$
\begin{aligned}
\cosh \left(a^{\prime}\right) & =\cosh \left(a^{\prime \prime}\right) \\
& =\frac{\cos (\theta)+\cos (\gamma) \cos (\mu)}{\sin (\gamma) \sin (\mu)}
\end{aligned}
$$

and so $a^{\prime}=a^{\prime \prime}$.
Suppose now that $a^{\prime}=a^{\prime \prime}$. Then, using ls, we see that $\frac{\sinh \left(a^{\prime}\right)}{\sin (\theta)}=\frac{\sinh (d)}{\sin (\beta)}=\frac{\sinh (d)}{\sin (\gamma)}=\frac{\sinh \left(a^{\prime \prime}\right)}{\sin (\theta)}$ and so $\beta=\gamma$, as desired.

