Question

Show that the points $z=1, \quad z=-\frac{1}{2}$ of the z-plane are inverse for the circle C_{1} with centre -1 and radius 1 .
With the circle centre 1 and the radius 1 denoted by C_{2} find a Mobius transformation

$$
w=\frac{a z+b}{c z+d} \quad(a d \neq b c)
$$

which transforms $z=1$ to $w=-1, C_{1}$ to $\operatorname{Re}(w)=\frac{1}{2}$ and C_{2} to $\operatorname{Re}(w)=-\frac{1}{2}$.

Answer

DIAGRAM
$A B C$ are collinear $A B=\frac{1}{2}, \quad A C=2 \quad A O=1$, therefore $A B \cdot A C=A O^{2}$
So C and B are inverse with respect to C_{1}
Bilinear transformations map circles and inverse points to circles and inverses or lines and images.
So since $C_{2} \rightarrow L_{2}$ and B^{\prime} and A are inverse with respect to C_{2} $A \rightarrow C \Rightarrow B^{\prime} \rightarrow w=-2$
Also since $C_{1} \rightarrow L_{1}$ and C and B are inverse with respect to C_{1}
$C \rightarrow A \Rightarrow B \rightarrow w=2$
So we have

z	w
1	-1
$-\frac{1}{2}$	2
$\frac{1}{2}$	2

So since $c z w+d w-a z-b=0$, we have

$$
\begin{align*}
-c-d-a-b & =0 \tag{1}\\
-c+2 d+\frac{1}{2} a-b & =0 \tag{2}\\
-c-2 d-\frac{1}{2} a-b & =0 \tag{3}
\end{align*}
$$

$\left.\begin{array}{l}(2)-(1) \rightarrow 3 d+\frac{3}{2} a=0 \\ (3)-(1) \rightarrow-d+\frac{1}{2} a=0\end{array}\right\} \Rightarrow a=d=0 \quad$ so $-c-b=0$
i.e. $w=-\frac{1}{z}$ - inversion in the origin, and reflections.

