Question

Show that $f(x)=|x-2|$ on the interval $[1,4]$ satisfies neither the hypotheses nor the conclusion of the Mean Value Theorem.

Answer
First, note that f is continuous on $[1,4]$, as it is the composition of two continuous functions, namely absolute value and a linear polynomial. However, f is not differentiable at $x=2$ (since absolute value is not differentiable at 0), and so the hypotheses of the mean value theorem are not satisfied.
To see that f does not satisfy the conclusion of the mean value theorem, we calculate: $f(4)-f(1)=|4-2|-|1-2|=2-1=1$ and $4-1=3$. However, for $x>2$, we have that $f^{\prime}(x)=1$ and for $x<2$ we have that $f^{\prime}(x)=-1$, and so there cannot be a point c in $(1,4)$ at which $f^{\prime}(c)=(f(4)-f(1)) /(4-1)=1 / 3$.

