Question

Use the mean value theorem to prove each of the following statements.

1. If $g^{\prime}(x)$ is a polynomial of degree $n-1$, then $g(x)$ is a polynomial of degree n;
2. $x /(x+1)<\ln (1+x)<x$ for $-1<x<0$ and for $x>0$;
3. $\sin (x)<x$ for $x>0$;

Answer

1. Suppose that $g^{\prime}(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}$, and consider the new function $h(x)=\frac{1}{n} a_{n-1} x^{n}+\frac{1}{n-1} a_{n-2} x^{n-1}+\cdots+\frac{1}{2} a_{1} x^{2}+a_{0} x-$ $g(x)$. Note that since g and polynomials are differentiable, and hence continuous, on all of \mathbf{R}, we have that h is differentiable, and hence continuous, on all of \mathbf{R}. Also, $h^{\prime}(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+$ $a_{1} x+a_{0}-g^{\prime}(x)=0$ for all $x \in \mathbf{R}$.

For $x_{0}>0$, apply the mean value theorem to h on the interval [$0, x_{0}$]. Since h is continuous on $\left[0, x_{0}\right]$ and differentiable on $\left(0, x_{0}\right)$, the mean value theorem yields that there exists some c in $\left(0, x_{0}\right)$ so that $h\left(x_{0}\right)$ -$h(0)=h^{\prime}(c)\left(x_{0}-0\right)=0$, since $h^{\prime}(c)=0$. That is, $h\left(x_{0}\right)=h(0)$ for all $x_{0}>0$. As above, we also get that $h\left(x_{0}\right)=h(0)$ for all $x_{0}<0$ by applying the mean value theorem to h on the interval $\left[x_{0}, 0\right]$.

Hence, setting $b=h(0)$, we have that $h(x)=b$ for all $x \in \mathbf{R}$. Substituting in the definition of h, this yields that $\frac{1}{n} a_{n-1} x^{n}+\frac{1}{n-1} a_{n-2} x^{n-1}+$ $\cdots+\frac{1}{2} a_{1} x^{2}+a_{0} x-g(x)=b$ for all $x \in \mathbf{R}$, that is, $g(x)=\frac{1}{n} a_{n-1} x^{n}+$ $\frac{1}{n-1} a_{n-2} x^{n-1}+\cdots+\frac{1}{2} a_{1} x^{2}+a_{0} x-b$ for all $x \in \mathbf{R}$, and so g is a polynomial of degree n.
2. This is a slightly different sort of argument, and we break it into two pieces, corresponding to the two inequalities.

Set $h(x)=x-\ln (x+1)$, and note that h is differentiable, and hence continuous, on $(-1, \infty)$. The two cases, of $-1<x<0$ and of $x>0$, are handled in the same fashion, and we write out the details only for the case $x>0$. Apply the mean value theorem to h on any closed interval in $[0, \infty)$. Note that $h(0)=0-\ln (1)=0$. If there were another point $x_{0}>0$ at which $h\left(x_{0}\right)=0$, then by applying either Rolle's theorem or the mean value theorem to h on the interval $\left[0, x_{0}\right]$, there would exist a point c in $\left(0, x_{0}\right)$ at which $h^{\prime}(c)=0$. However, $h^{\prime}(c)=1-\frac{1}{c+1}$, which
is non-zero for $c \neq 0$. Hence, $h(x) \neq 0$ for all $x \in(0, \infty)$. By the intermediate value theorem, this forces either $h(x)>0$ for all $x>0$ or $h(x)<0$ for all $x>0$ (because if there are points a and b in $(0, \infty)$ at which $h(a)>0$ and $h(b)<0$, then there is a point c between a and b at which $h(c)=0$). Since $h(1)=1-\ln (2)=0.3069 \ldots>0$, we have that $h(x)>0$ on $(0, \infty)$, that is, that $x>\ln (x+1)$ for all $x>0$, as desired. (As noted above, the argument to show that $h(x)>0$ for $-1<x<0$, or equivalently that $x>\ln (x+1)$ for $-1<x<0$, is similar, and is left for you to write out.)

For the other inequality, set $g(x)=\ln (x+1)-\frac{x}{x+1}$, and note that g is differentiable, and hence continuous, for $x>-1$. (As above, we give the details in the case that $x>0$, and leave the case of $-1<x<0$ to you the reader.) Note that $g^{\prime}(x)=\frac{x}{(x+1)^{2}}>0$ for $x>0$. In particular, applying the mean value theorem to g on the interval $\left[0, x_{0}\right]$, we see that there is c in $\left(0, x_{0}\right)$ so that $g\left(x_{0}\right)-g(0)=g^{\prime}(c)\left(x_{0}-0\right)>0$, since both $g^{\prime}(c)>0$ and $x_{0}>0$. Hence, $g\left(x_{0}\right)>g(0)=0$ for all $x>0$. That is, $\ln (x+1)>\frac{x}{x+1}$ for all $x>0$.
3. Here, set $g(x)=x-\sin (x)$. We wish to show that $g(x)>0$ for all $x>0$. First, note that since $-1 \leq \sin (x) \leq 1$ for all $x \in \mathbf{R}$, we have that $g(x)>0$ for $x>1$, and so we can restrict our attention henceforth to $0<x \leq 1$. Also, note that $g(x)$ is differentiable, and hence continuous, on all of \mathbf{R}, and so we may apply the mean value theorem to g on any closed interval $\left[0, x_{0}\right]$ for $0<x_{0} \leq 1$. So, there exists some c in $\left(0, x_{0}\right)$ so that $g\left(x_{0}\right)-g(0)=g^{\prime}(c)\left(x_{0}-0\right)$. Since $g(0)=0$ and since $g^{\prime}(c)=1-\cos (c)>1$ for $c \in(0,1)$, we have that $g\left(x_{0}\right)>0$ for all $0<x_{0} \leq 1$, and hence that $g(x)>0$ for all $x>0$, as desired.

