
Question

Use the mean value theorem to prove each of the following statements.

1. If g′(x) is a polynomial of degree n − 1, then g(x) is a polynomial of
degree n;

2. x/(x + 1) < ln(1 + x) < x for −1 < x < 0 and for x > 0;

3. sin(x) < x for x > 0;

Answer

1. Suppose that g′(x) = an−1x
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the new function h(x) = 1
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g(x). Note that since g and polynomials are differentiable, and hence
continuous, on all of R, we have that h is differentiable, and hence
continuous, on all of R. Also, h′(x) = an−1x
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a1x + a0 − g′(x) = 0 for all x ∈ R.

For x0 > 0, apply the mean value theorem to h on the interval [0, x0].
Since h is continuous on [0, x0] and differentiable on (0, x0), the mean
value theorem yields that there exists some c in (0, x0) so that h(x0)−
h(0) = h′(c)(x0 − 0) = 0, since h′(c) = 0. That is, h(x0) = h(0) for
all x0 > 0. As above, we also get that h(x0) = h(0) for all x0 < 0 by
applying the mean value theorem to h on the interval [x0, 0].

Hence, setting b = h(0), we have that h(x) = b for all x ∈ R. Substi-
tuting in the definition of h, this yields that 1
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n
an−1x

n +
1

n−1
an−2x

n−1+· · ·+ 1
2
a1x

2+a0x−b for all x ∈ R, and so g is a polynomial
of degree n.

2. This is a slightly different sort of argument, and we break it into two
pieces, corresponding to the two inequalities.

Set h(x) = x − ln(x + 1), and note that h is differentiable, and hence
continuous, on (−1,∞). The two cases, of−1 < x < 0 and of x > 0, are
handled in the same fashion, and we write out the details only for the
case x > 0. Apply the mean value theorem to h on any closed interval
in [0,∞). Note that h(0) = 0− ln(1) = 0. If there were another point
x0 > 0 at which h(x0) = 0, then by applying either Rolle’s theorem or
the mean value theorem to h on the interval [0, x0], there would exist
a point c in (0, x0) at which h′(c) = 0. However, h′(c) = 1− 1

c+1
, which
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is non-zero for c 6= 0. Hence, h(x) 6= 0 for all x ∈ (0,∞). By the
intermediate value theorem, this forces either h(x) > 0 for all x > 0 or
h(x) < 0 for all x > 0 (because if there are points a and b in (0,∞) at
which h(a) > 0 and h(b) < 0, then there is a point c between a and b at
which h(c) = 0). Since h(1) = 1 − ln(2) = 0.3069... > 0, we have that
h(x) > 0 on (0,∞), that is, that x > ln(x+1) for all x > 0, as desired.
(As noted above, the argument to show that h(x) > 0 for −1 < x < 0,
or equivalently that x > ln(x+1) for −1 < x < 0, is similar, and is left
for you to write out.)

For the other inequality, set g(x) = ln(x+ 1)− x

x+1
, and note that g is

differentiable, and hence continuous, for x > −1. (As above, we give
the details in the case that x > 0, and leave the case of −1 < x < 0 to
you the reader.) Note that g′(x) = x

(x+1)2
> 0 for x > 0. In particular,

applying the mean value theorem to g on the interval [0, x0], we see
that there is c in (0, x0) so that g(x0)− g(0) = g′(c)(x0 − 0) > 0, since
both g′(c) > 0 and x0 > 0. Hence, g(x0) > g(0) = 0 for all x > 0. That
is, ln(x + 1) > x

x+1
for all x > 0.

3. Here, set g(x) = x − sin(x). We wish to show that g(x) > 0 for all
x > 0. First, note that since −1 ≤ sin(x) ≤ 1 for all x ∈ R, we
have that g(x) > 0 for x > 1, and so we can restrict our attention
henceforth to 0 < x ≤ 1. Also, note that g(x) is differentiable, and
hence continuous, on all of R, and so we may apply the mean value
theorem to g on any closed interval [0, x0] for 0 < x0 ≤ 1. So, there
exists some c in (0, x0) so that g(x0) − g(0) = g′(c)(x0 − 0). Since
g(0) = 0 and since g′(c) = 1 − cos(c) > 1 for c ∈ (0, 1), we have that
g(x0) > 0 for all 0 < x0 ≤ 1, and hence that g(x) > 0 for all x > 0, as
desired.
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