Vector Calculus
 Grad, Div and Curl Identities

Question

It is given that ϕ and ψ are scalar fields and \underline{F} and \underline{G} are vector fields. They are all assumed to be smooth functions. Prove the following identity

$$
\nabla(\underline{f} \bullet \underline{G})=\underline{F} \times(\nabla \times \underline{G})+\underline{G} \times(\nabla \times \underline{F})+(\underline{F} \bullet \nabla) \underline{G}+(\underline{G} \bullet \nabla) \underline{F}
$$

Answer

The first component of $\nabla(\underline{F} \bullet \underline{G})$ is

$$
\frac{\partial F_{1}}{\partial x} G_{1}+F_{1} \frac{\partial G_{1}}{\partial x}+\frac{\partial F_{2}}{\partial x} G_{2}+F_{2} \frac{\partial G_{2}}{\partial x}+\frac{\partial F_{3}}{\partial x} G_{3}+F_{3} \frac{\partial G_{3}}{\partial x}
$$

We now need the calculate the first components of the terms on the right hand side of the equation.
For $\underline{F} \times(\nabla \times \underline{G})$, the first component is

$$
F_{2}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right)-F_{3}\left(\frac{\partial G_{1}}{\partial z}-\frac{\partial G_{3}}{\partial x}\right) .
$$

For $\underline{G} \times(\nabla \times \underline{F})$, the first component is

$$
G_{2}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)-G_{3}\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right)
$$

For $(\underline{F} \bullet \nabla) \underline{G}$, the first component is

$$
F_{1} \frac{\partial G_{1}}{\partial x}+F_{2} \frac{\partial G_{1}}{\partial y}+F_{3} \frac{\partial G_{1}}{\partial z}
$$

For $(\underline{G} \bullet \nabla) \underline{F}$, the first component is

$$
G_{1} \frac{\partial F_{1}}{\partial x}+G_{2} \frac{\partial F_{1}}{\partial y}+G_{3} \frac{\partial F_{1}}{\partial z}
$$

By adding these first components together it can be seen that all of the terms cancel out except those in the first component of $\nabla(\underline{F} \bullet \underline{G}$. Similar calculations for the other components yield similar results, hence

$$
\nabla(\underline{f} \bullet \underline{G})=\underline{F} \times(\nabla \times \underline{G})+\underline{G} \times(\nabla \times \underline{F})+(\underline{F} \bullet \nabla) \underline{G}+(\underline{G} \bullet \nabla) \underline{F}
$$

