Vector Calculus
 Grad, Div and Curl Identities

Question

It is given that $\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}$ and that \underline{c} is a constant vector.
Show that

$$
\begin{aligned}
\nabla \bullet(\underline{c} \times \underline{r}) & =0 \\
\nabla \times(\underline{c} \times \underline{r}) & =2 \underline{c} \\
\nabla(\underline{c} \bullet \underline{r}) & =\underline{c}
\end{aligned}
$$

Answer

$$
\begin{array}{r}
\nabla \bullet \underline{r}=3 \\
\nabla \times \underline{r}=\underline{0} \\
\nabla r=\frac{\underline{r}}{r}
\end{array}
$$

\underline{c} is a constant vector, hence its div and curl both equal zero.

$$
\begin{aligned}
\Rightarrow \nabla \bullet(\underline{c} \times \underline{r}) & =(\nabla \times \underline{c}) \bullet \underline{r}-\underline{c} \bullet(\nabla \times \underline{r})=\underline{0} \\
\nabla \times(\underline{c} \times \underline{r}) & =(\nabla \bullet \underline{r}) \underline{c}+(\underline{r} \bullet \nabla) \underline{c}-(\nabla \bullet \underline{c}) \underline{r}-(\underline{c} \bullet \nabla) \underline{c} \\
& =3 \underline{c}+\underline{0}-\underline{0}-\underline{c}=2 \underline{c} \\
\nabla(\underline{c} \bullet \underline{r}) & =\underline{c} \times(\bullet \times \underline{r})+\underline{r} \times(\nabla \times \underline{c})+(\underline{c} \bullet \nabla) \underline{r}+(\underline{r} \bullet \nabla) \underline{c} \\
& =\underline{0}+\underline{0}+\underline{c}+\underline{0}=\underline{c}
\end{aligned}
$$

