Vector Calculus Grad, Div and Curl Identities

Question

It is given that $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$, with $r = |\underline{r}|$. It is also given that f is a differentiable function of one variable.

Show that

$$\nabla \bullet (f(r)\underline{r}) = rf'(r) + 3f(r)$$

and find f(r) if it is assumed that $f(r)\underline{r}$ is solenoidal for $r \neq 0$. Answer

$$\nabla \bullet (f(r)\underline{r}) = (\nabla f(r)) \bullet \underline{r} - f(r)(\nabla \bullet \underline{r})$$
$$= f'(r)\frac{\underline{r} \bullet \underline{r}}{r} + 3f(r)$$
$$= rf'(r) + 3f(r)$$

If $f(r)\underline{r}$ is solenoidal, then $\nabla \bullet (f(r)\underline{r}) = 0$, so that u = f(r) will satisfy

$$r\frac{du}{dr} + 3u = 0$$

$$\frac{du}{u} = -\frac{3 dr}{r}$$

$$\ln|u| = -3 \ln|r| + \ln|C|$$

$$u = Cr^{-3}$$

$$\Rightarrow f(r) = Cr^{-3}$$

for an arbitrary constant C.