Question

If f is measurable prove that for all $a, b \in \mathbb{R}$ $\{x | a \leq f(x) < b\}$ is measurable. Is the converse of this result true?

Answer

$$\{x | a \le f(x) < b\} = \{x | f(x) < b\} \cap \{x | f(x) \ge a\}$$

The converse is not true, for example, let $\mathbf{R}_{+}^{\mathbf{n}}$ be the half space $x_1 > 0$. Let A be a non-measurable subset of $\mathbf{R}_{+}^{\mathbf{n}}$. Define $f: \mathbf{R}^{\mathbf{n}} \to \mathbf{R}^{*}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \not\in \mathbf{R}_+^{\mathbf{n}} \\ +\infty & \text{if } x \in A \\ -\infty & \text{if } x \in \mathbf{R}_+^{\mathbf{n}} - A \end{cases}$$

Then for all $a, b \in \mathbb{R}$, $\{x | a \leq f(x) < b\}$ is either ϕ or the complement of \mathbb{R}^n_+ , both of which are measurable. However $\{x | f(x) > 0\} = A$ which is non-measurable.