## Question

Prove that each of the following statements holds in a field $F$, using only the axioms of a field.

1. $a \cdot(-b)=(-a) \cdot b=-(a \cdot b)$ for all $a, b \in F$;
2. $(-a) \cdot(-b)=a \cdot b$ for all $a, b \in F$;
3. $(-1) \cdot a=-a$ for all $a \in F$;
4. $(-1) \cdot(-1)=1$.

## Answer

1. Since $F$ is a commutative group under addition, $a+(-a)=0$. Multiplying on the right by $b$ and applying the above fact that $0 \cdot b=0$, we get $(a+(-a)) \cdot b=0$. Apply the distributive law to get $a \cdot b+(-a) \cdot b=0$. Adding the additive inverse $-(a \cdot b)$ of $a \cdot b$ to both sides and using the two facts that $-(a \cdot b)+a \cdot b=0$ and that 0 is the additive identity, we obtain $(-a) \cdot b=-(a \cdot b)$. (Similarly, starting with $b+(-b)=0$ and multiplying on the left by $a$, we get that $a \cdot(-b)=-(a \cdot b)$.) (And as above, since both $(-a) \cdot b$ and $a \cdot(-b)$ are equal to $-(a \cdot b)$, they are equal to each other.)
2. Start with $a+(-a)=0$, and multiply both sides on the right by $b+(-b)$. Expanding out, we get $a \cdot b+a \cdot(-b)+(-a) \cdot b+(-a) \cdot(-b)=0$. Since $a \cdot(-b)=(-a) \cdot b=-(a \cdot b)$, this becomes $a \cdot b+(-(a \cdot b))+(-(a \cdot$ $b))+(-a) \cdot(-b)=0$. Since $-(a \cdot b)$ is the additive inverse for $a \cdot b$, this becomes $-(a \cdot b)+(-a) \cdot(-b)=0$. Adding $a \cdot b$ to both sides and simplifying, this becomes $(-a) \cdot(-b)=a \cdot b$, as desired.
3. Start with $1+(-1)=0$, and multiply on the right by $a$. Since $0 \cdot a=$ 0 , this becomes $(1+(-1)) \cdot a=0$. Expanding out, this becomes $1 \cdot a+(-1) \cdot a=0$. Since 1 is the multiplicative identity, this becomes $a+(-1) \cdot a=0$. Adding $-a$ to both sides and simplifying, this becomes $(-1) \cdot a=-a$, as desired.
4. Since we know already that $(-a) \cdot(-b)=a \cdot b$, we can take $a=1$ and $b=1$ to get $(-1) \cdot(-1)=1 \cdot 1=1$, with this last equality following from the fact that 1 is the multiplicative identity.
