Question

Let m be a parabolic Möbius transformation with fixed point $x \neq \infty$. Show that there exists a unique complex number p so that

$$
m(z)=\frac{(1+p x) z-p x^{2}}{p z+1-p x}
$$

Answer

Since we are given a formula, we can check it directly: suppose there are two such $p \mathrm{~s}$, call them p_{1}, p_{2}; and write:

$$
m(z)=\frac{\left(1+p_{1} x\right) z-p_{1} x^{2}}{p_{1} z+1-p_{1} x}=\frac{\left(1+p_{2} x\right) z-p_{2} x^{2}}{p_{2} z+1-p_{2} x}
$$

Then,

$$
m m^{-1}(z)=\frac{\left(1+p_{1} x-p_{2} x\right) z+p_{2} x^{2}-p_{1} x^{2}}{\left(p_{1}-p_{2}\right) z+\left(1-p_{1} x+p_{2} x\right)}
$$

Since $m m^{-1}(\infty)=\infty$, the coefficient of z in the denominator is 0 , and so $p_{1}=p_{2}$.
As for existence: for all $p \in \mathbf{C}$, all $x \in \mathbf{C}$.

$$
m(z)=\frac{(1+p x) z-p x^{2}}{p z+1-p x}
$$

is parabolic fixing x (except $p=0$ when $m(z)=z$).
(Could also explicitly derive the formula for $m(z)$ directly from the information given.)

