Partial Differentiation

Limits

Question

Let function f be given by

$$
f(x, y)=\frac{\sin x \sin ^{3} y}{1-\cos \left(x^{2}+y^{2}\right)}
$$

Can f be defined at $(0,0)$ so that it becomes continuous there? If it is possible, explain how.
Answer

$$
f(x, y)=\frac{\sin x \sin ^{3} y}{1-\cos \left(x^{2}+y^{2}\right)}
$$

Cannot be defined at $(0,0)$ to be continuous there.
This is because $f(x, y)$ has no limit as $(x, y) \rightarrow(0,0)$.
Observe that $f(x, 0)=0$, so the limit, if it did exist would have to be 0 .
But

$$
f(x, x)=\frac{\sin ^{4} x}{1-\cos \left(2 x^{2}\right)}=\frac{\sin ^{4}}{2 \sin ^{2}\left(x^{2}\right)}
$$

and $f(x, x) \rightarrow \frac{1}{2}$ as $x \rightarrow 0$.
So f cannot be defined to be continuous at $(0,0)$.

